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Abstract
The light microscope is an essential tool for the study of cells, organelles, biomolecules, and

subcellular dynamics. A paradox exists in microscopy whereby the higher the needed lateral

resolution, the more the image is degraded by out-of-focus information. This creates a signif-

icant need to generate axial contrast whenever high lateral resolution is required. One strategy

for generating contrast is to measure or model the optical properties of the microscope and to

use that model to algorithmically reverse some of the consequences of high-resolution imag-

ing. Deconvolution microscopy implements model-based methods to enable the full

diffraction-limited resolution of the microscope to be exploited even in complex and living

specimens.
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INTRODUCTION

Microscopes are some of the most ubiquitous tools in the biological laboratory, yet

most scientists use themwithout knowing much about them or the fundamental phys-

ics necessary to get the most from them. Our look at quantitative deconvolution mi-

croscopy will begin with a look at the microscope itself. In order for a microscope to

be useful, it must fulfill three functions: magnification, resolution, and contrast.

A microscope that delivers one or two of these attributes but not all three is of little

value. We start by looking at each of these attributes and how they affect the image

from the microscope. The process of looking at these attributes elucidates the lim-

itations of the microscope and motivates this chapter.

Magnification, for the sake of this chapter, will be defined as the portion of the

field of view that is projected onto the detector. Compared to the field of view of a

human eye, five times (5�) magnification would project one-fifth of the lateral di-

mensions onto the eye. Since magnification takes place in both lateral dimensions,

the area reduction is the magnification squared or 1/25 in the case of the 5� objec-

tive. The general formula is

FOV¼ 1

M2
(10.1)

This has a profound effect on the amount of signal that can be collected with increas-

ing magnification. For a fixed light collection efficiency (to be discussed later), the

amount of signal from a sample also falls according to this relationship:

Brightness¼ 1

M2
(10.2)

If we start with a given field of view that generates a total of one million photons per

second and view that area with a 5� objective, the number of photons drops to

40,000. For a 100� objective, the number of photons drops to only 100 photons. This

has a significant impact on the contrast of the image. The statistical noise (Poisson

noise) in the image is

NoisePoisson ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Events

p
(10.3)

The consequences of magnification on the signal-to-noise ratio (SNR) can be seen in

Table 10.1.

Table 10.1 Effect of increased magnification on SNR

Magnification Photons Noise SNR

1� 1,000,000 1000 1000:1

5� 40,000 200 200:1

100� 100 10 10:1
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The SNR drops from 1000:1 to 10:1 purely as a consequence of the magnification

change from 1� to 100�. So, how do we overcome this loss? The answer is in the

numerical aperture (NA) of the objective lens. NA is defined as

NA¼ n� sin Yð Þ (10.4)

where n is the lowest index of refraction between the sample and the front of the

objective lens and theta (Y) is the half angle that describes the cone of light that

can be effectively captured by a given lens. The consequence of a larger cone (higher

NA) is that many more photons can be collected. Overall, the relative brightness is

proportional to the NA to the fourth power divided by the magnification squared:

Brightness/NA4

M2
(10.5)

Some examples of brightness for known lenses are given in Table 10.2.

As you can see, the loss of brightness as a consequence of magnification is more

than compensated for by a concomitant increase in NA. On the surface, this is ben-

eficial because the resolution also increases with NA. In fact, Z resolution increases

with NA2 so this would seem to be advantageous for microscopy. The problem is

demonstrated in Fig. 10.1.

Table 10.2 Relative brightness of common objective lenses

Magnification NA FOV Brightness

1 0.157 1.00000 1.000

5 0.15 0.04000 0.033

10 0.40 0.01000 0.421

20 0.85 0.00250 2.148

40 1.30 0.00063 2.938

60 1.42 0.00028 1.859

100 1.40 0.00010 0.632

FIGURE 10.1

Lateral and axial contrast as a function of spatial detail. Lateral (kx,y) and axial (kz) contrast

as a function of spatial detail in a microscope. Notice that the lateral detail (resolution) is

well supported by significant contrast, while the axial detail is poorly supported; consequently,

with increasing NA, a thinner image plane is in focus, while the out-of-focus contribution

from adjacent planes is still present. The overall effect is higher axial blur in images as

a function of higher NA.
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As you can see, while the resolution along the Z-axis increases, there is no gain in
the axial contrast with NA. In other words, as NA increases, the contribution of

blurred (out-of-focus) information actually increases. So, the dimmer and smaller

something is, the more problem there is with blur in the image. This is referred to

as “the missing cone,” and it has led microscopists to seek ways of generating axial

contrast in order to be able to increase the sensitivity and in-focus information. Some

of those methods include mechanical sectioning, deconvolution microscopy, confo-

cal microscopy, multiphoton microscopy, and selective plane illumination. This

chapter focuses on deconvolution microscopy. With the exception of mechanical

sectioning, all of these methods are reserved for fluorescence and do not apply to

transmissive imaging. In a transmissive image such as the absorption of light by a

chromogen or stain, the intensity at each point is the sum of the absorptions along

a ray from the light source to the sample. While the absorption of light along that

ray is linearly related to mass (per Beer’s law), the exact location of each chromogen

is difficult to assess. In fluorescence, the measured light originates at the fluoro-

chrome. This greatly simplifies the mathematical model of the microscope and en-

ables advanced optical methods such as confocal microscopy.

10.1 THE POINT-SPREAD FUNCTION
The resolution of the microscope is finite. In fluorescence microscopy (where the

condenser and the objective lens are the same lens), the resolution (D) is given as

D¼ 0:61�l
NA

Rayleigh criterionð Þ (10.6)

So, for green fluorescence emitted from eGFP (em¼510 nm) and an ideal 1.4 NA

objective, the resolution could be as good as 222 nm (per Rayleigh). The conse-

quence is that any object that is smaller than 222 nm will project to a minimum

of 222 nm. But it is actually more complicated in three dimensions. If one were

to measure how a single point of light spreads through space, he or she would visually

describe the blurring that occurs in the microscope. Such a measurement is called the

point-spread function (PSF).

One can view the PSF by collecting a set of images of a fluorescent bead sitting on

a cover glass. Starting away from the plane of best focus, one can collect a series of

images approaching the plane of best focus and moving beyond that plane of focus.

Figure 10.2 shows two views of the image series. Panel (A) shows a through-focus

series of the PSF enhanced to show the low intensity values by expressing the dis-

played intensities as the third power of the actual values, that is, D¼ I3. Panel (B)
shows the image series as an orthogonal view through the same PSF.

As you can see in panel (A), the out-of-focus bead generates a series of rings that

narrow as they become the closer to the optimum focus and that then spread out again

in a symmetrical fashion as the focus is passed. The symmetry of the spread of the

rings laterally and through the focus is indicative of the optical conditions and the
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quality of the objective lens and can be used to evaluate optical systems (Goodwin,

2007). Even in the best case, these images are not simple to collect and interpret and

in the case of optical aberrations become quite complex. Importantly, the PSF dem-

onstrates how each point source of light in the object is spread. So, any image ac-

quired in the microscope is actually the summation of all of the overlapping PSFs

from each subresolution point in space. This is expressed as the imaging formula

IImage ¼ IActual
N

PSF (10.7)

The frustration of every microscopist is that they never see the actual object (IActual).
All they can ever see is a projection of the object blurred by the PSF (IImage). This is

illustrated in Fig. 10.3.

The term convolution (⊗) is a specific mathematical description of the physical

phenomenon of the overlap of the PSFs. One analogy is that of a paint brush that dabs

a pattern (the PSF) on every point in the object. Deconvolution is a mathematical

process that seeks to reverse this process and restore an image that more closely ap-

proximates the image of the original object.

FIGURE 10.2

Lateral and axial views of the point-spread function (PSF). The point-spread function (PSF)

of a good-quality lens is marked by lateral and axial symmetry. Panel (A) shows how the

PSF of a good lens is symmetrical about the center of the image as the microscope is focused

one micrometer below (�1 mm), in the middle of (0 mm), and 1 mm above (+1 mm) the

plane of best focus. Panel (B) is a representation of an X–Z section through the same bead in

panel (A). To generate the X–Z section, a series of X–Y images were collected at 0.2 mm
spacing through the focus of a single fluorescent latex bead (0.1 mm diameter). A software

is then used to properly scale and orthogonally section the stack of X–Y images into the

single X–Z section presented. For both panels, the intensities are displayed and raised to the

third power (display¼ I3) as discussed in the text.
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10.2 DECONVOLUTION MICROSCOPY
Deconvolution microscopy is an image-processing method that seeks to computa-

tionally reverse the effects of the blurring in the microscope. There are generally

two types of deconvolution: deblurring and image restoration.

FIGURE 10.3

The effect of inherent blur in microscopy. Since the NA of the objective lens is limited,

complete knowledge of the actual object is not obtained in the light microscope (see

Eq. 10.7). The image that is obtained (IImage) is the actual object (IActual) convolved with

the PSF. Panel (A) shows the effect of this blurring on a single point of fluorescence. The

actual object is blurred resulting in a spreading and reduction of the intensity of the object

(Imaged). If the image is scaled (Scaled), one can see the significant spreading that occurs.

If one were to then take a series of points in a row (panel B) and blur those, they would

appear as a continuous line. The effect that this has on real object, in this case a PTK1

cell labeled with a fluorescent antibody against b-tubulin, is evident in panel (C, right). While

considerably more detail can be seen in a superresolution image of the cell (panel C, left),

the resolution of the object is substantially decreased when imaged with diffraction-limited

optics.

Fluorescent sample kindly provided by Dr. Keith DeLuca, University of Colorado.
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10.2.1 DEBLURRING
Deblurring (also called nearest-neighbor deconvolution, multineighbor deconvolu-

tion, etc.) is a fast algorithm for reducing blur in an image. It has the advantage that

it is quickly calculated but has the disadvantage that it tends to be noisy and that the

results produced are not generally linear (Fig. 10.4):

Deconvolved nj
� �¼ nj� nj�1

N
PSFEst

� �
� nj + 1

N
PSFEst

� �
(10.8)

The image taken in a given focal plane is the object at that plane blurred by the

in-focus PSF and the out-of-focus contribution from the objects above and below that

plane. Deblurring attempts to estimate the contribution attributable to the out-of-

focus image planes and subtract them from the in-focus image plane. To estimate

the contribution of the out-of-focus planes, the images taken at the adjacent image

planes n( j�1) and n( j+1) are each blurred by an estimate of the PSF (based on NA).

In multineighbor deblurring, the contribution for further adjacent planes such as

n( j�2) and n( j�2) is also blurred and subtracted from the image plane. As men-

tioned, these calculations are fast but they are prone to two problems. First, since it is

a subtractive process, the SNR of the resulting image is reduced. The signal is lost

from subtraction and the noise is increased by the propagation of error. Second, the

intensity of a given location is significantly influenced by the imprecision in the es-

timation of the contribution of out-of-focus objects, such that linearity is lost. The

contribution from neighboring objects can only be estimated since their intensity

is also not known (along with the in-focus object). The estimation of blurring the

out-of-focus planes before subtraction does not adequately describe their contribu-

tion. As a consequence, deblurring should never be used when intensity is intended to

represent actual mass of fluorochromes in a location.

Deblurring becomes less relevant as computational power increases. In the

1990s, when these methods were made popular, the computational power necessary

for proper image restoration was too expensive. Advances in computational speed

have rendered these deblurring algorithms as unnecessary, but they still persist in

some software applications.

FIGURE 10.4

Nearest-neighbor deconvolution. In this figure, a cell is imaged by taking five images

(n1, n2, n3, n4, and n5) at successive focal planes through the object. The images in adjacent

images can be used to subtract their contribution. See text for details.

18310.2 Deconvolution microscopy



10.2.2 IMAGE RESTORATION
Image restoration turns back to the imaging equation in Eq. (10.7). Bymaking a care-

ful measure of IImage and the PSF, one can usemathematics to derive the best estimate

of the actual object (IObject) that when blurred by the PSF generates the measured

IImage. But how is this accomplished?

10.2.3 FOURIER TRANSFORMS
Jean Baptiste Joseph Fourier (1768–1830) was a French polymath. Among many of

his activities, he was attempting to model how heat transfers through metals. This

ended up being critical to making improvements to the steam engine that had been

introduced earlier by James Watt. As Fourier worked on the model, he realized that

he had insufficient mathematical tools to solve the problem, so he created new tools.

These tools were built around his realization that any waveform could be expressed

in terms of a series of cosine waves with different amplitudes and phase (now re-

ferred to as a Fourier series). By converting complex waveforms into a Fourier series,

certain types of functions that were very difficult or impossible to solve without the

tool became solvable. The complex form could be converted into frequency space

(cosine functions with different amplitudes and phases), simple algebra could be

used to solve the equations, and the results could be converted back into real space

to provide the solution. The process is analogous to using logarithms to solve com-

plex multiplications, convert the numbers to logs, add the numbers, and then convert

the results back into decimal values. For a thorough description of Fourier methods,

the reader is referred to Goodman (2005).

In the case of image restoration as described in the preceding text, we need to

work around the term “blurred with the PSF.” In real space, this is a very difficult

concept, and it is mathematically difficult to solve for this notion of blurring with

the PSF. The process is called convolution (symbolized as⊗) and it is a bit complex

to solve for 3D space. In the frequency space, convolution simply becomes multipli-

cation. Taking the imaging formula (Eq. 10.7), we can transform it to frequency

space as

F0 IImage

� �¼F0 IActualð Þ�F0 PSFð Þ (10.9)

where F0 represents the Fourier transform. The terms of the equation can be rear-

ranged to

F0 IActualð Þ¼F0 IImage

� �
F0 PSFð Þ (10.10)

By now taking the reverse Fourier transform of this ratio, we can now solve for the

IActual. This method is referred to as the inversion solution. While relatively simple,

the problem with this method is noise. Whenever a measurement is made, there is

uncertainty. At the limit of resolution for the IImage and the PSF, the values ap-

proach zero and the noise dominates the measures, resulting in significant errors
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caused by dividing by zero. To avoid these problems, more elegant solutions are

normally deployed. While space limitations preclude an exhaustive review of all

published methods, the following sections describe a few of the more common

methods.

10.2.4 ITERATIVE METHODS
Iteration is a method of solving equations that overcomes the problems of divid-

ing by values close to zero. In the case of image restoration, the steps are as

follows:

1. IActual is estimated (IEstimate).

2. IEstimate is then blurred with the PSF (IBlur).
3. IBlur is compared to IImage resulting in IResidual.
4. Refine IEstimate based on IResidual.
5. Repeat 2–4 minimizing IResidual.

This represents the simplest form of iterative deconvolution algorithm. In practice, as

was discussed in the preceding text, every measurement contains noise. This noise

leads to instabilities in this simplest form. A number of modifications have been made

to this simplest form to incorporate a priori constraints. These constraints stabilize the

algorithm, reduce the number of iterations necessary to obtain an acceptable outcome,

and can somewhat extend the resolution of the image (Mertz, 2010). One form of con-

straint is to limit the noise by periodically introducing a smoothing operation, such that

IEstimate is periodically blurred. Another form of constraint sets any negative values to

zero when updating IEstimate, based on the observation that negative intensity is non-

sensical (Goodman, 2005; Mertz, 2010; Wallace, Schaefer, & Swedlow, 2001). This

method was first introduced by Gold and refined by Agard (Agard, 1984; Gold, 1964;

Swedlow et al., 1997) based on modifications to the original methods of Jansson

(Jansson, 1997) and Van Cittert (Frieden, 1975). The treatment of noise is generally

referred to as “noise regularization.” A full treatment of these methods is beyond the

reach of this chapter, and the user is instead referred to Wallace et al. (2001), Mertz

(2010), Conchello (1998), Holmes (1992), McNally, Karpova, Cooper, and Conchello

(1999), Shaw (1993), and Shaw and Rawlins (1991).

In some cases, the PSF is not known. Estimating the PSF through first principles

(Goodman, 2005, Shaw, 1993, Shaw & Rawlins, 1991) can be used, but in our ex-

perience, these methods do not fully account for the resolution empirically observed

(Hiraoka, Sedat, & Agard, 1990). In addition, in some samples, the PSF is highly

variable throughout the volume of the sample. To overcome these limitations, a class

of algorithms have been developed that solve for both the object (IActual) and the PSF.
This class of algorithms are referred to as “blind deconvolution” (Holmes, 1992) and

in some cases have proved to be quite effective, especially when the performance of

the entire optical system (including the sample) is difficult to assess. For an ap-

proachable discussion of these and other methods, the reader is referred to

Wallace et al. (2001).
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10.2.5 THE IMPORTANCE OF IMAGE QUALITY
The age-old axiom of “garbage in, garbage out” certainly applies to all image-

processing methods and deconvolution in particular. Like many methods, deconvo-

lution microscopy assumes a model for the microscope and optics and uses that

model to extract more information from the data. The degree to which the actual mi-

croscope matches the model used will determine the quality of the restored image. If

the microscope is well matched to the model, then the restored image will closely

approximate the actual object. If the microscope is poorly matched to the model, then

the restored image will have little in commonwith the actual object. In the latter case,

the model needs to be adapted to accommodate the unexpected behavior. For poorly

behaved systems, these adaptations will adversely affect the quality and quantitative

nature of the restored images.

10.2.5.1 Factors that affect image restoration
1. Geometry—As we have explored earlier, restorations generally rely on 3D data

sets. The microscope model assumes that the geometry of the data accurately

reflects the geometry of sample. For example, many algorithms perform the

deconvolution in spatial coordinates and not pixel coordinates. This is a more

precise way of estimating the object but it requires that the pixel geometry is

known. Importantly, it requires that the Z-step size is precise (consistent) and

uncoupled to the X-axis and Y-axis. If the Z-step size is variable, then the

geometry of the data does not match the geometry of the sample, and

deconvolution will struggle. Likewise, a common problem in microscope stages

is cross coupling of the axes. In cross coupling, movements in one axis, say Z,
induce changes in an orthogonal axis (X and/or Y). This results in misalignment of

the image data and poor agreement between the sample and the data.

2. Intensity—Image restoration assumes that differences in pixel intensities reflect

differences in the mass of material at each position in space. If the relationship

between mass and intensity is variable, then the restoration will poorly reflect the

sample. Factors that affect the mass–intensity relationship include variable

illumination, photobleaching, and nonlinear fluorescence. The intensity of a

given volume pixel (voxel) is a function of the input light (illumination), the

detection efficiency, and the mass of available fluorescent molecules. Changes

in each of these parameters will affect the mass–intensity relationship.

Illumination intensity at each point in the sample starts with spatial and temporal

stability of the light source (Chapter 1). Light uniformity can be maximized

by assuring that the microscope is properly aligned for Koehler illumination.

Temporal fluctuations in lamp intensity can be normalized using the integrated

intensity of each Z-plane. Since there is little expected change in integrated

intensity between planes with wide-field microscopy and Koehler illumination,

then this model can be effective. With other illumination schemes, these

methods may or may not work. Illumination stability is also affected by debris

and defects in the light path including the excitation filter and dichromatic
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beam splitter. These should be clean and free of these defects (Chapter 4).

Likewise, changes in detection efficiency (emission filter defects, camera gain

noise, etc.) can also affect how well the restored image reflects the sample.

Finally, there are changes in fluorochrome that can affect the model. If the mass

of available fluorochrome changes through the experiment (e.g.,

photobleaching), then the intensity–mass relationship is perturbed. Also, changes

in quantum yield due to fluorochrome saturation, quenching, and the local

environment (solvent effects) can all lead to artifacts that will affect the

appropriateness of the model and thus the quality of the deconvolution process.

Some of these can be mitigated by experimental condition (choice of

fluorochrome, illumination intensity, etc.) or corrected using a suitable model

(photobleaching), but the user should be aware of the limitations of this or any

other method.

3. Optics—The best resolution that an optical system can achieve is when the

system is free of aberrations. Any deviations from the ideal can only degrade the

resolution and contrast in the system. Optical aberrations can be caused by

defects in the microscope itself (objective lenses, tube lens, etc.), and the

microscope should be tested for these defects (Goodwin, 2007). However, most

users are unaware of the effects of the sample on optical quality. Even if the

microscope is free of defects and aberrations, the optical properties between the

specimen and the front lens of the objective significantly contribute to the

overall optical system. Some of these defects are difficult to avoid, for example,

imaging through a cell wall (in plants and some microbes), a cuticle (such as

a drosophila embryo), or high-refractive-index surfaces (like neural tissue).

However, in many cases, the sample effects are avoidable. For example, dirt

and smudges on the cover glass, mixing different immersion oils, improper

mounting of the media, tilted cover glass, and uncorrected spherical aberration all

significantly degrade the reconstruction because they are not included in the

model. While one could construct a much more complex imaging model, it is

more generally applicable to fix the problems that can be fixed (the smudges and

such) and reserve improvements in the model for those attributes that are not

easily fixed (e.g., the diffraction limit).

10.3 RESULTS
One way to assess the effects of deconvolution is to visually inspect the outcome, but

this is a qualitative measure that lacks exactness. Another way is to take the Fourier

spectrum of images pre- and postdeconvolution. In the case of Fig. 10.5B and D, the

spectrum represents the Fourier spectrum of the images pre- and postdeconvolution

(A and C, respectively). In this representation, the Fourier spectrum is plotted such

that the low-frequency components (those values that are spatially variant over large

distances) are plotted toward the center. As one expands radially from the center,

higher-frequency components (the intensity fluctuations that are spatially variant
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over short distances) are plotted. The intensity of the Fourier spectrum (in this case

squared) represents the contrast observed at that particular spatial frequency. The

extent to which the spectrum spreads laterally is a measure of the lateral resolution.

This spectrum also extends axially but is not displayed here. If the Fourier spectrum

of one image extends further radially than another, it indicates that the spatial fre-

quencies are higher than those in the other image.

In the case of Fig. 10.5B and D, the circles are approximations of the extent of the

Fourier spectrum and are presented merely for clarity. In panel (D), the inner circle

FIGURE 10.5

Resolution enhancement with deconvolution. Panel (A) represents the image of a single

field of view of fluorescently labeled 0.10-mm beads dried onto a coverslip. Panel

(B) represents the Fourier spectrum of the image in panel (A) scaled to illustrate the weak

values in the image. In this representation of the Fourier spectrum, the contrast of low

spatial detail is plotted in the center of the image and spatial detail increases toward the

perimeter. The white circle illustrates the spatial frequency at which the contrast falls to

background levels. Panel (C) represents the data in panel (A) after deconvolution was

applied, and similarly, panel (D) represents the Fourier spectrum of that image. The outer

circle illustrates the resolution limits after deconvolution as compared with the resolution

limit prior to deconvolution (inner circle). See text for details.
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represents the extent of the spectrum in the image predeconvolution. The outer cir-

cle represents the extent of the spectrum postdeconvolution. As can be seen, in this

example, the deconvolution process extended the resolution approximately 20%. In

reality, the resolution improvement is even less. Most of the apparent improvement

is the result of an increase in contrast (signal-to-background) due to deconvolution.

All of the resolution in the postdeconvolution image (panel C) was present in the

predeconvolved image (panel A); however, the resolution was not accessible due

to a lack of contrast. In the predeconvolution image, blur throughout the volume

of the image increases the background of the image. After deconvolution, the

background intensities contributed by blur are assigned to their proper locations

in space, resulting in not only a decrease in background but also a substantial

increase in integrated intensities in the objects. This contrast (signal-to-back-

ground) improvement ranges from 10- to 100-fold depending on the extent of

out-of-focus objects.

10.3.1 ASSESSING LINEARITY
The wide-field fluorescence microscope is generally considered to be a linear in-

strument. That is, over the majority of the dynamic range of the instrument, there

exists a linear relationship between the mass of fluorochrome in the original sample

and the observed fluorescence intensity. This is especially true for instruments that

conform to the ideal model of the microscope discussed in the preceding text. This

linearity allows for intensity measurements to be made and compared and for these

comparisons to be correlated to mass changes in the actual object. Is this linearity

maintained with deconvolution? Does the integrated intensity of an object postde-

convolution bear a mass relationship with fluorochrome in the actual objects? In

short, it depends. Some systems and methods maintain the mass relationship, while

others do not. No comprehensive assessment of the linearity of all imaging systems

exists but one method of assessing linearity was published (Swedlow, Hu,

Andrews, Roos, & Murray, 2002; Swedlow, 2007). In their method, Swedlow

et al. obtained 2.5-mm latex beads with six different relative concentrations of

fluorochrome over 3.5 orders of magnitude. The intensities of the beads were mea-

sured using fluorescence-activated cell sorting (FACS) including the means and

coefficients of variation. Beads were then mixed and dried onto coverslips, and

image stacks were collected with a wide-field microscope. The volumetric inte-

grated intensity of the beads with pre- and postdeconvolution was compared to

the distributions measured by FACS with comparable results over three orders

of magnitude. The weakest intensity beads were shifted in mean and coefficient

of variability. It should be noted that, in this paper and the test samples used, both

wide-field and deconvolution methods fared better than confocal systems. In the

presence of optical aberrations, such as spherical aberration, the confocal system

would be expected to fair even worse (White, Errington, Fricker, & Wood, 1995).

For this study, Swedlow et al. used the Agard constrained iterative method men-

tioned previously.
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10.3.2 APPLICATIONS OF DECONVOLUTION MICROSCOPY
The contrast and resolution improvements afforded by deconvolution microscopy

can be exceptionally useful for certain specimens and of little value in others. This

has been the topic of countless investigations and “shoot-outs” at microscopy work-

shops and demonstrations. Needless to say, as with all techniques, there are some

samples that are more appropriate than others (Murray, Appleton, Swedlow, &

Waters, 2007). Deconvolution microscopy in general works in applications where

the biological targets are small and where the density of labeling is relatively

low. For example, deconvolution microscopy is ideally suited for studying cells

and tissues in the range of 1–15 mm. Of course, there are some samples of tremen-

dous depth (100 mm or so) where deconvolution has worked spectacularly, and there

are some samples of shallow depth (<1 mm) that are impossible to image. Highly

scattering and absorptive samples are extremely hard to optically image without me-

chanical sectioning.

One application where deconvolution often excels is in live-cell imaging up to a

few cell layers deep. Live-cell imaging poses unique challenges to microscopy and

especially fluorescence microscopy. Fluorescence is inherently an inefficient meth-

odology. A tremendous number of excitation photons must be created in order to ob-

tain even a modest number of emission photons. By some estimates, the most

efficient microscopy systems yield approximately one detected photon for every

105 excitation photons (at the light source). As optical methods are deployed that

eliminate emission photons (such as confocal) or that rely on rare nonlinear excita-

tion (like multiphoton microscopy), the efficiencies decrease dramatically. Murray

et al. estimate that spinning disk confocal microscopes are approximately 5% as ef-

ficient as wide-field systems and point-scanning confocal systems can be as little as

0.5% as efficient as wide-field systems. This often has tremendous implications for

live-cell imaging. Many cells are poorly equipped for handling large photon doses. If

one considers a cardiomyocytes in an intact human, that cell would rarely if ever be

exposed to a photon with a wavelength of less than 1000 nm; consequently, it has few

mechanisms for dealing with more energetic photons at shorter wavelengths. Awide-

field microscope with a high-NA objective lens typically exposes a cell to roughly

the same photon flux as sitting out in direct daylight. A point-scanning confocal may

be 10,000 times higher, and a two-photon microscopy system can easily be 10,000

times higher than that. Some calculate the density of photons in a two-photon system

to be higher than the photon density on the surface of the sun. Anything that can be

done to reduce the photon flux on cells will help to minimize photodamage to the cell

(Chapter 5).

Since we have established that deconvolving microscope images generally in-

creases the contrast 10- to 100-fold, we can design experiments where this improve-

ment is relied on. With deconvolution, we can often collect images with lower than

desired contrast and count on the improvement that the algorithm affords. Lower

contrast for the same hardware system translates into a combination of lower and

shorter illumination onto the cell. This can lead to dramatic improvements in cell

viability.
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Deconvolution microscopy is not always effective. First of all, it is typically more

effective with high-NA optics than it is with low-NA optics. Below an NA of 0.75,

there is little axial resolution and contrast such that the algorithm has little informa-

tion to work with. Very dense labeling can be problematic, again due to poor lateral

and axial contrast. Samples that are highly scattering are difficult for all imaging sys-

tems, but the method of image formation in point-scanning systems can yield supe-

rior results over wide-field systems. Deconvolution microscopy works best with 3D

data sets, while a confocal microscope system does not require 3D acquisition. This

can yield faster results than deconvolution. This can be critical in attempting to im-

age very rapidly moving objects, although new fast imaging modalities and brighter

fluorescent probes (Chapter 6) mitigate much of this problem.

CONCLUSION

Deconvolution microscopy can be a highly effective method of enhancing the res-

olution and contrast of the optical microscope while enabling reduced photon load

on the specimen. For many biological specimens, this improvement offers equivalent

or better resolution than confocal or multiphoton systems while producing signifi-

cant improvements in cell viability. Deconvolution can be linear and can maintain

mass–intensity relationships in samples if properly deployed.

A general rule of thumb is to use only as much technology as the sample demands.

If wide-field microscopy is sufficient, then there is no need for deconvolution. If

deconvolution is necessary and sufficient, then there is no need for a confocal sys-

tem. If the sample can tolerate higher photon flux and demands more contrast than

deconvolution can deliver, then a confocal or even multiphoton system may be

required.

As with all instrumentation, there is no single technology that can address all of

the needs of a scientist; however, deconvolution has a proved history of being an

important tool for microscopists and cell biologists.
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