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L
ive cell imaging is now used across
all domains of cell and develop-
mental biology (1). Combined
with the straightforward facility

for molecular labeling via fluorescent pro-
teins and other labeling techniques, live
cell imaging gives unparalleled access to
the dynamics of ions and molecules in
living cells and the patterns of growth and
movement of cells in living tissues. Many
critical insights into the biology of the cells
of microorganisms, plants, and animals
have been revealed through live cell imag-
ing, and its applications only grow with ev-
ery new labeling tool or imaging modality
that is reported. Despite this success, live
cell imaging is technically demanding and
is a technique that has substantial limita-
tions.Microscopyhas recently enjoyedgreat
success in breaking well-known optical
limits in spatial resolution (2, 3), but for
studies of dynamics in live cells, temporal
resolution is at least as important—tempo-
ral aliasing causes significant artifacts and
can hide biologically important phenotypes
and mechanisms (4).
One othermajor challenge is the extreme

photosensitivity of living cells. Merely ex-
posing fungal and human cells to blue light
arrests cell proliferation through absorp-
tion of various endogenous, weakly fluores-
cent cellular molecules (5). Introducing the
fluorescent proteins or small-molecule flu-
orophores commonly used to mark cells
and tissues only increases this sensitivity
by at least an order of magnitude, because
there is an increased number of molecules
in excited states and thus increased gener-
ation of reactive species during relaxation
from the excited state. Typical room light
exposes cells to approximately 1 pW/cm2. A
conventional wide-field microscope using a
white-light mercury Hg arc lamp and con-
ventional fluorescence filters exposes the
same sample to approximately 100 μW/cm2.
The power levels are substantially higher
for confocal microscopy and for all modes
of scanning and confocal microscopy (6).
Optimizing signal-to-noise ratio (SNR)

while maintaining cell viability is often the
key challenge in a live cell imaging experi-
ment. In PNAS, Carlton et al. (7) make
a series of major advances in all of these
domains—they report a unique platform
for rapid live cell imaging, a rigorous test
of cell viability, and an application of well-
established noise filtering tools to live cell
imaging data. In one article they havemade

a number of critical steps, and it is likely the
field will never be the same.

A New Platform for Light Microscopy
The first major achievement Carlton et al.
(7) report is the design and implementation
of the OMX microscope. Many new mo-
dalities of microscopy have been recently
described and demonstrated. OMX pro-
vides a flexible platform for the develop-
ment of new modes of imaging, and the
authors recently reported the use of OMX
to implement 3D structured illumination
microscopy (8). In their most recent paper,

Computational

techniques like denoising

can recover objects that

are otherwise invisible.

Carlton et al. report the application of
OMX to high-speed live cell imaging (7),
but the platform lends itself easily to the
application of 3D structure illumination
microscopy, photoactivation light micros-
copy, and total internal reflection micros-
copy and potentially can be used for digital
light sheet microscopy (9) as well as
many others.
A number of key advances have been

implemented in the OMX platform. There
is a comprehensive improvement in phys-
ical stability using materials with very low
thermal expansion coefficients; kinematic
mounts for the objective lens, stage, and
the “drawer” that holds the dichromatic
mirrors; and acoustic and thermal isola-
tion. For fluorescence microscopy, the
light path has been optimized to minimize
stray excitation light and thereby reduce
a critical source of noise in most fluores-
cence microscopes. The system can record
up to four independent fluorescence chan-
nels simultaneously. Finally, the illumi-
nation and sample holding and focusing
mechanisms have been optimized for
speed so that millisecond exposures are
routine and microsecond exposures are
possible. The stability and speed of OMX
make it a great platform for building new
modalities of microscopy and critically
testing their performance.
In this report, Carlton et al. (7) have used

the OMX platform to study the application

of fast live cell imaging and specifically
study the viability of cells during illumina-
tion in live cell imaging experiments. The
authors use a strain of the budding yeast
Saccharomyces cerevisiae that has two chro-
matin “marks” made by expressing lacI
fused to GFP (GFP-lacI) in a yeast cell that
includes two arrays of binding sites for lacI.
When the arrays are bound by GFP-lacI,
two diffraction-limited spots are created in
the cells that can be followed in a fluores-
cence microscope. This technology is well
established and now a standard methodol-
ogy to study the dynamics and properties
of chromatin in living cells (10, 11). Carlton
et al. (7) use this system for a concept-
ually simple experiment: by recording 3D
stacks over time at different levels of illu-
mination and then examining the viability
of cells after the imaging experiment, they
measure the correlation between light
dose and photodamage in their specimens.
Carlton et al. (7) use a very common via-
bility criterion, namely the ability of cells to
complete division, but they extend this re-
quirement and demand that cells complete
a total of five cell divisions after the com-
pletion of the imaging experiment. This is
quite a rigorous requirement, but their data
clearly show that moderate levels of fluo-
rescence illumination can arrest cell di-
vision failures two or even three cell cycles
after imaging. Thus, their first major insight
is that photodamage in a live cell imaging
experiment can cause deleterious effects
many hours after exposure to illumination
has ceased. The authors then successfully
reduce illumination to the point at which
cell viability is not affected according to
their rigorous standard, enabling sampling
rates faster than most conventional micro-
scopes. Unfortunately, the achieved SNR
under this imaging regime is so low as
to make the images extremely hard to
interpret—it is very hard to see anything at
all in their data—and this sets the stage for
the next advance of Carlton et al. (7).

Revealing the Invisible
Computational image processing and
analysis are now standard tools in
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microscope imaging in cell biology. One of
the first applications of computational im-
age processing involved signal restoration
via iterative deconvolution, which im-
proved contrast by compensating for image
blurring due to the limited aperture of the
microscope objective lens. A range of
methods were developed and used, and
they helped advance the use of 3D imaging
in cell biology and reveal the structures of
cells and their constituents (12–14). How-
ever, the last few years have brought a fun-
damental change in the use and application
of computational tools in biological mi-
croscopy. There are now a range of appli-
cations that go beyond simply enhancing
a signal but in fact reveal patterns, struc-
tures, and dynamics that are not at all visible
to the human eye. Fluorescence speckle
microscopy uses sparsely labeled polymers
and sophisticated particle tracking tech-
niques to reveal polymer dynamics in living
cells that cannot be directly appreciated
by human vision (15). Applications of ma-
chine learning to cell biology now provide
tools for automatically classifying images
and identifying structures in them (16, 17).
Image-based screening systems, or high
content screening (HCS), generate many
thousands or millions of images while
sampling the effects of a library of small
molecules or siRNAs. The scale of each
HCS experiment makes reliable human
observation and interpretation impossible
and is another case in which automated
object recognition and phenotype classifi-
cation must be used to extract information
from an imaging experiment (18). New
methods like photo-activated localization
microscopy (PALM) and stochastic optical
reconstruction microscopy (STORM) cre-
ate an image through the reconstruction of

the computed positions of many individual
fluorophores in a field (19). Following in
this vein, Carlton et al. (7) apply image
denoising algorithms that have found ap-
plication in many other fields to the prob-
lem of live cell images with severely limited
SNR recorded under conditions that are
consistent with cell viability. This class of
denoising algorithms scans the image with
a small “patch” (e.g., a 5 × 5 grid) and de-
fines the noise models within that patch.
The algorithms can scan across space and
time and look for regions with similar noise
characteristics. The general premise is that
regions with similar noise characteristics
will be from similar parts of the sample.
Having identified these similar regions, av-
eraging can be used to smooth out some of
the noise and detect objects that are oth-
erwise not visible. The images recorded
under the most restrictive illumination
conditions—in which almost no structure
can be recognized—reveal clear images of
the chromatin dots in the cells that were
imaged. Carlton et al. (7) go on to show that
these methods can be applied not only to
samples with single isolated points but also
to much more complex structures, suggest-
ing that there may be general methods for
extracting structures from images with se-
verely limited SNR.
The general point here is not that

denoising algorithms should be used in
every application of live cell imaging—like
any other method, they have their limi-
tations and can create artifacts, especially
in images with very low SNR, and it is
not clear from the analysis of Carlton et al.
(7) whether their approach smoothes
rapid motions near or at the limit of their
temporal sampling. Rather, this is a re-
minder of the power that computational

tools bring to SNR-limited data in general,
and especially to live cell imaging experi-
ments, and that increasingly, real insights
from biological systems depend on the
continued development and application of
unique imaging techniques and computa-
tional tools to extract as much infor-
mation as possible, without the limitations
of human perception or bias.
The advances of Carlton et al. (7) have

impact across all domains of cell biology.
They show it is possible to improve the
general design of the light microscope, and
in so doing, provide much-improved im-
age data. Future modifications that adapt
OMX to single molecule imaging (e.g.,
PALM and STORM) should be possible
soon. Moreover, they suggest that the illu-
mination levels used in many live cell im-
aging experiments may in fact be doing
significant damage to cells, and this should
be considered when interpreting results
from these assays. Finally, they demon-
strate that, although imaging conditions
consistent with cell viability may produce
signal-limited data, computational tech-
niques like denoising can recover objects
that are otherwise invisible. This final in-
sight may be their most important, because
it applies to all live cell imaging experi-
ments, recorded on any imaging platform.
Denoising then joins a growing list of
computational tools that reveal signals in-
visible to the human eye in modern biology.
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