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Background: Spectral imaging extends the capabilities
of biological and clinical studies to simultaneously study
multiple features such as organelles and proteins qualita-
tively and quantitatively. Spectral imaging combines two
well-known scientific methodologies, namely spectroscopy
and imaging, to provide a new advantageous tool. The need
to measure the spectrum at each point of the image re-
quires combining dispersive optics with the more common
imaging equipment, and introduces constrains as well.

Methods and Results: The principles of spectral imaging
and a few representative applications are described. Spec-
tral imaging analysis is necessary because the complex
data structure cannot be analyzed visually. A few of the

algorithms are discussed with emphasis on the usage for
different experimental modes (fluorescence and bright
field). Finally, spectral imaging, like any method, should
be evaluated in light of its advantages to specific applica-
tions, a selection of which is described.

Conclusions: Spectral imaging is a relatively new tech-
nique and its full potential is yet to be exploited. Never-
theless, several applications have already shown its poten-
tial. © 2006 International Society for Analytical Cytology

Key terms: spectral imaging; multicolor microscopy;
image analysis; spectral unmixing; linear decomposition

Spectral imaging combines spectroscopy and imaging.
Each of these fields is well developed and is being used
intensively in many fields including the life sciences. The
combination of these two is, however, not trivial, mainly
because it requires creating a three-dimensional (3D) data
set that contains many images of the same object, where
each one of them is measured at a different wavelength. It
also means that the total acquisition time is long, which
stands in contrast to the requirements of many bio-medi-
cal applications. Therefore, compromises must be made
for high quality images in a limited amount of time.

For explaining the characteristics of spectral imaging, it
is better to start with an introduction of the two elements
of spectral imaging; imaging and spectroscopy.

IMAGING

Imaging is the science and technology of acquiring spa-
tial and temporal data information from objects for the
purpose of obtaining information. At this time, digital ima-
ging is the most advanced and applicable method where
data are recorded using a digital camera, such as a charged
coupled device (CCD).

In biological studies, the images can be measured either
by common optical methods such as optical microscopy
or by more advanced methods that provides additional
physical or chemical information about the objects; exam-
ples include optical coherence tomography and life-time
imaging. Because of the broad usage of imaging, we limit

the following discussion to optical microscopy, mainly in
the visible-light range.

The quality of an image determines the amount of infor-
mation that can be extracted from it and the following list
describes the most common parameters that characterize
the acquired images:

1. Spatial resolution determines the closest distinguish-
able features in the objects. It depends mainly on the
wavelength (L), the numerical aperture (NA) of the objec-
tive lens, the magnification, and the pixel size of the array-
detector, usually a CCD camera. The latter two play a role
because they determine the sampling frequency which
must be sufficiently high to achieve full resolution. Spatial
resolution also depends on the signal quality (1).

2. Lowest detectable signal depends on the quantum
efficiency of the detector (the higher the better), the noise
level of the system (the lower the better), the NA of the
optics (the higher the better), and the quality of the optics.
It is especially important in applications where the num-
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ber of photons is limited, or where the total time that is
available for the measurement is limited (e.g., due to fluo-
rescence quenching by oxygen or in live-cell imaging).

3. Dynamic range of the acquired data determines the
number of different intensity levels that can be detected in
an image. It depends on the maximal possible number of
electrons at each pixel and on the lowest detectable signal
(basically it is the ratio of these two values). If, however,
the measured signal is low, so that the CCD well associated
with a pixel is only partially filled, the dynamic range will
be limited accordingly. As an example, if a CCD well is ful-
filled to only 10% of its maximum capacity, the dynamic
range will be reduced to 10% of its nominal value.

4. Field of view (FOV) determines the maximal area
that can be imaged.

5. Other parameters include the exposure time range
(usually determined by the detector) and the binning of CCD
pixels to gain sensitivity (by trading-off spatial resolution).

See Table 1 for a summary and typical parameters
values.

Excellent quality CCD’s as well as photomultipliers and
other light-detectors are now available. Nevertheless, even
with an ideal detector with no noise at all, the light itself
has intrinsic noise (shot noise) that cannot be avoided. If
n photons have been counted, then shot noise, with its
Poisson distribution, has a standard deviation of about
\/n. The signalto-noise ratio (SNR) is proportional to
n/\/n = \/n and can only be improved by increasing the
intensity, the exposure time, or both. At best, an imaging
system is “shot-noise limited,” which means that the qual-
ity of the detector is high enough so that the sensitivity of
the system is limited by the shot-noise.

In actual measurements, there are many imperfections
that reduce the quality of the image such as autofluores-
cence, non-specific staining, bleaching and others, but
these should be distinguished from the physical limita-
tions set by the electro-optical system itself and the nature
of light.

Table 1
Characteristic parameters of a spectral imaging system.
The “typical” value shows the common value that is achievable,
but depends on the specific dispersion method that is used and
the quality of the system elements (e.g. bigh NA objective lens,
bigh quantum efficiency QE)

Category Property Typical
Imaging Spatial resolution 250 nm (in plane) at
A =500 nm
Field of view ~50 pm high
magnification)
Dynamic range 8-16 bits
(256-65, 536 intensity
levels)
Lowest detectable Shot-noise limited
signal
Spectroscopy Spectral resolution 1-20 nm (may
depend on A)
Spectral range 400-900 nm

Excited state
energy band

S
®

@

Spontaneous decay
to a meta-stable state

Absorption ©)

Emission
(fluorescence)

Energy

Ground energy state

Fic. 1. A simplified energy-level diagram of a fluorescent molecule (1).
Electrons are excited from the ground state to the excited band by absorb-
ing a photon (2). The electrons decay rapidly to a meta-stable energy level
(3). Electrons fall back to the ground state by emitting a photon with
lower energy relative to the exciting photon.

SPECTROSCOPY

Spectroscopy is a term that is used to describe different
phenomena, and we limit our discussion to optical spec-
troscopy, mainly in the visible light range. A spectrum is a
collection of light intensities at different wavelengths.
Spectroscopy, the science of acquiring and explaining the
spectral characteristics of matter, is a broad, well estab-
lished and old science. Newton described the dispersion
of white light to its constituent colors (2,3) in 1666 and
by 1900 the spectrograph, a system for measuring a spec-
trum, was widely used. Spectroscopy provided the spec-
trum of hydrogen that was explained by Balmer in 1885,
which led in 1913 to the Bohr model of the atom (4), and
finally to the development of quantum mechanics by
Schrodinger in 1926 (5).

The structure of atoms and molecules is directly related
to spectroscopy. The spectrum is a direct measurement of
the energy levels of the detected structure (Fig. 1). Mole-
cules (and atoms) have a specific energy-band structure.
In an absorption process (which occurs in both bright-
field and fluorescence microscopy), an electron is excited
from the ground state to an excited energy band (1 in
Fig. 1). In fluorescence, the electron rapidly decays to a
meta-stable energy level (2 in Fig. 1). Then, light is emitted
when the electron decays back to the ground state (3 in
Fig. 1). The energy levels are intrinsic properties of the
molecule, and the spectrum, therefore, provides a precise
fingerprint of the molecule.

Even though this work focuses on the visible-light spec-
tral range (which is relevant for the electronic transitions
described earlier), the infrared spectrum (usually 2-20
um) is also heavily used for measuring absorption by mat-
ter. The infrared light is much less energetic (an infrared
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photon carries much less energy than in the visible range)
and it can be absorbed by molecules and initiate a vibra-
tion and rotation of the atoms, sometimes called vibronic
modes. The vibrations are specific to the inter-atomic
bonds and therefore the infrared absorption of a molecule
is an excellent fingerprint of its structure (6). Raman spec-
troscopy allows one to monitor the infrared absorption by
performing the actual measurements in the visible light
spectral range (7).

It is important to distinguish fluorescence and absorp-
tion processes. In fluorescence measurement (also lumi-
nescence and phosphorescence), fluorescent molecules
(or other fluorescing entities) are attached to the objects,
or the object itself is the source of light (such as chloro-
phyll or a fluorescent protein). In many cases there is a
direct functional relationship between the concentration
of fluorescent molecules and the amount of fluorescence
intensity. At low concentrations this relationship is linear
and therefore quantitative analysis is possible.

In fluorescence it is essential to distinguish the weak
emitted light from the strong excitation light. This
requires the use of color filters, excitation barrier filters,
dichroic mirrors, and emission barrier filters that allows
one to distinguish the two light sources. These filters must
have adequate transmission ranges and high rejection
ratios at the required wavelength and the spectrum that is
measured is, therefore, usually different from the real
emitted spectrum. Different effects such as saturation and
bleaching may disrupt an expected linearity of the signal
and should be tested for each specific case.

In bright-field microscopy, reflection microscopy, and
scattering microscopy, the sample is illuminated with an
external light source and the detector measures that very
same light after interaction with the sample. Spectral anal-
ysis of the data must take into account the light source
spectrum in order to accurately extract the desired spec-
trum. In bright-field microscopy, the measured signal may
not be directly proportional to the concentration of the
observed molecules but to its logarithm.

To measure a spectrum, the light is dispersed into its
different wavelengths (or color) components and the in-
tensity at each one is measured. There are different
methods to disperse the light and almost all of them are
used in various spectral imaging systems. Some of the
important characteristics of a spectrum includes (see
also Table 1):

1. The spectral resolution determines the closest wave-
lengths that can be distinguished.

2. The spectral range in which spectra can be mea-
sured.

3. The lowest detectable signal and dynamic range,
which defines the smallest measurable signal and the num-
ber of distinguishable levels in a given measurement.
These parameters also depend on the shape of the meas-
ured spectrum. A sharp laser line has a better detectable
signal because the energy is concentrated at a single wave-
length when compared to a broad spectrum with equal
energy which is distributed over a large spectral range.
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SPECTRAL IMAGING

Spectral imaging combines these two methodologies,
spectroscopy and imaging. Whereas imaging provides the
intensity at every pixel of the image, I(x,)), and a typical
spectrometer provides a single spectrum, I(A), a spectral
image provides a spectrum at each pixel, I(x,),A). This is a
3D data set and can be viewed as a cube of information.
One can consider I(x,);A) as either a collection of many
images in which each one is measured at a different wave-
length or as a collection of many spectral values at each
pixel (Fig. 2).

REALIZATION OF SPECTRAL IMAGES

Spectral imaging requires the combination of a disper-
sive element (or method) for acquiring the spectral infor-
mation with an imaging system. The data collected at each
pixel is the intensity at each wavelength, I(x,),2) (Fig. 2).
When a 2D array detector is used (e.g., CCD), the spectral
image cannot be acquired at once. If a lower-dimension
detector, such as a line-detector or a single-point detector,
is used then even more time will be required. This chal-
lenge has led to the development of different methods as
described later.

Spectral imaging methods can be divided into the fol-
lowing methods: (1) Wavelength-scan methods that mea-
sure the images one wavelength at a time. (2) Spatial-scan
methods that measure the whole spectrum of a portion of
the image at a time and scan the image (e.g., line by line).
(3) Time-scan methods that measure a set of images where
each one of them is a superposition of spectral or spatial
image information. At the end of the acquisition, the data
is transformed to the actual spectral image (e.g., by Fou-
rier methods). (4) Methods that measures the whole spec-
tral image simultaneously, but compromise on the number
of points in the spectrum, the FOV or spatial resolution.

If we assume that a spectral imaging system consists of
ideal optical elements, the quality of the acquired data of a
spectral image, at a given amount of time, depends only
on the signal itself and on the simultaneous number of de-
tector elements that collects information from the image;
the larger the number, the faster the measurement.

Wavelength-Scan Methods

A simple method for measuring a spectral image is to
use a set of color-filters (Fig. 3B), each of which transmits
a narrow band wavelength (say a bandwidth of 10 nm).
Such a system is inappropriate when a large number of
wavelengths (filters) are required. It is practical only
where a very small number of wavelengths are needed.

A more convenient way is to use variable-filters, which
are more compact and robust. Three common variable fil-
ters include the circular-variable filter (CVF) (8) as shown
in Figure 3A, liquid-crystal tunable filter (LCTF) (9) shown
in Figure 3C, and acousto-optical tunable filter (AOTF)
(10,11), as shown in Figure 3D. The CVF transmits a nar-
row-band light depending on the beam position on its sur-
face (usually around a circular filter). The AOTF and LCTF
are electro-optical components with no moving parts. The



738 GARINI ET AL.

l most common LCTF system (Lyot design) transmits a nar-
/ row-band wavelength by applying a varying voltage on a
polarizable liquid crystal mounted between two linear
polarizers (Fig. 3C). Usually a few stages are needed to
achieve high resolution which reduces the total transmis-
sion within the filter’s passband. An AOTF uses a crystal
such as Tellurium dioxide (TeO,) on which acoustic
waves are applied (Fig. 3D). At each frequency of the
acoustic waves, the crystal deforms to a grating with a spe-
cific period and therefore transmits a different wavelength
in a given direction. These types of filters capture a full
spectral image by measuring one image at a time but each
time at a different wavelength. They have the advantage
that a user-selectable number of wavelength images can
be acquired as well as the flexibility to choose an optimal
exposure time for each separate wavelength. On the other
hand, the spectral resolution is usually hardware-depend-
ent and, for a given system, cannot be changed. See, for
example, the review by Gat (12).

Spatial-Scan Methods
Fic. 2. Description of a spectral image data set. Each point in the cube In this method, the dispersion of light is achieved by
represents a single number and the spectral image is described as I(x,),A). s : . . .
It can be viewed either as an image I(x,») at each wavelength A, or as a using elth.er a 8r atlng or a prism (Flg. 3B). These are very
spectrum I()) at every pixel (x,)). common in single-point spectrometers but, when used for
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Fic. 3. Various methods of spectral imaging systems. They can be divided into four main methods: wavelength-scan (A-D), spatial scan (E), time scan (F)
and “compromise” methods (G). In wavelength-scan methods, the whole image is measured one wavelength at a time. This can be realized using either a
circular variable filter (A), a set of filters (B), a liquid crystal variable filter (C) or an acousto-optic variable filter (D). Spatial-scan methods use a dispersion
element, either a grating or prism (E) and the image has to be scanned along at least one axis. There are also confocal microscopes that use a dispersive ele-
ment and scan the image point by point. In time-scanning method (F), the whole image is measured after passing through an interferometer (or other opti-
cal elements). In order to calculate the spectrum at each pixel a mathematical transformation has to be carried out, for example, a Fourier transform. In
“compromise” methods (G) only a few spectral ranges are measured and the FOV is limited, but the measurement is fast.

Cytometry Part A DOI 10.1002/cyto.a



SPECTRAL IMAGING: PRINCIPLES AND APPLICATIONS 739

spectral imaging. Only one line of the object can be mea-
sured at a time. This requires one to scan the object line-
by-line to collect the entire spectral image. The data is
therefore collected as I(x,)) and then scanned along y
(13). These methods have an advantage when the mea-
sured object is moving linearly and can be applied, for
example, while scanning a Papanicolau-smear sample on
an automated stage. On the other hand, the scanning
mechanism is required even if it is not an intrinsic part of
the optical system.

It is also possible to measure the spectral image with a
confocal microscope which scans the object point-by-point
with a photomultiplier detector. This is done by passing
the light through a prism or grating in the optical path to
the detector (or using a line-detector) (14). Such methods
are advantageous when the confocal advantage is needed
(e.g., thick samples). On the other hand it uses a signifi-
cantly smaller number of detector elements for the acqui-
sition relative to CCD-based methods. Therefore, a longer
acquisition time is required in comparison to the CCD-
based systems in order to achieve the same SNR.

Time-Scan Methods

Another method is based on measuring data that is a
superposition of the spectral or spatial information and
therefore requires the transformation of the acquired data
to derive the spectral image. One of these methods is Fou-
rier spectroscopy (15,16), see Figure 3E In this method
there are no filters and the spectrum is measured by using
the interference of light. An interferometer (Fig. 3F) is a
system that splits a beam of light into two beams, creates
an optical path difference (OPD) which is also a time
delay between them (Mirror M, in Fig. 3F), and joins the
beams back again to interfere at the detector. When the in-
tensity is measured as a function of many OPDs, it forms a
pattern called an interferogram that is specific to the
tested spectrum. The interferogram is then Fourier-trans-
formed in order to determine the spectrum. Figure 3F
shows a Michelson interferometer but other interfero-
meters, such as Sagnac, exist that have stability advantages
(16). This method has the advantage that the intensity at
each wavelength is collected throughout the whole dura-
tion of the measurement. It also allows selecting the
required spectral resolution without any changes to the
hardware, simply by setting specific acquisition parame-
ters. On the other hand, the full spectrum must be col-
lected even if only a small number of points spread along
the spectral range are needed.

Another method that is related to time-scanning meth-
ods is based on the Hadamard transform (17). This
method uses an imaging spectrometer equipped with a
CCD and special optics. A spatial light modulator com-
presses the whole 2D image onto the slit of the imaging
spectrometer and allows blocking any set of points from
the image. By measuring many 2D images, each of which
contains a superposition of spatial and spectral informa-
tion and performing a Hadamard transformation, the spec-
tral imaging information can be retrieved.
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Methods That Compromise Spatial
or Spectral Parameters

In this approach, a compromise is sought for the simul-
taneous measurement of spectral and spatial parameters.
These methods are suitable for high-speed spectral ima-
ging measurements which are crucial in several applica-
tions such as detecting fast metabolic processes. The sim-
plest method is to select a smaller part of the FOV and pro-
ject it multiple times on the same CCD, each one through
a different filter (18) (Figure 3G). As shown, the FOV
reduces four-fold and only four spectral ranges are mea-
sured. A related approach has been taken in flow cytome-
try where a dispersion element projects six emission
images onto a time-delayed integration CCD whose pixel
clock rate is synchronized with the flow stream (19).
Another such method is computed-tomography (20)
where a holographic disperser is designed to project spec-
tral-spatial information on a single CCD array. The spectral
image itself has to be reconstructed from the raw data.
Here too, the spatial resolution and FOV are traded off for
the spectral information.

Spectral images usually measure the emission (or trans-
mission) from the samples, but excitation spectra can also
be obtained by placing the system on the excitation opti-
cal port. For transmission measurements, such a method
provides similar information, but it is different for fluores-
cence. Dickinson et al. (21) has extended the excitation
method to multiphoton excitation (22) and has shown
how it can be used to eliminate autofluorescence and dis-
tinguish dyes with similar emission spectra.

SPECTRAL IMAGING CHALLENGE: INFORMATION
VERSUS TIME

A spectral image contains significantly more informa-
tion and data than a single color image and, thus, takes
longer to acquire. When comparing the total acquisition
time of different methods, it should be based on a compar-
ison of similar images quality or SNR.

Theoretically, the ideal system includes many shot-noise
limited detectors that can measure simultaneously the entire
spectral image. If, in addition, we could tune the spectral-
range sensitivity of each one of these detectors, it would
provide the ideal system. Such a detector may look like a cu-
bical structure (Fig. 2) where each box is a detector.

So far, no such detector is available. The total acquisition
time continues to depend on the sequential number of
times that data has to be collected. It is clear, however, that
the larger the number of detector elements that can be
used in parallel, the shorter the measurement time will be.

As an example, assume that it is only required to mea-
sure an image with three spectral components which are
in the blue, green, and red spectral ranges. If a gray-level
CCD is used, it requires an acquisition of three images.
There are also sensors that allow one to capture three
color ranges simultaneously (23), such as from Foveon
(Santa Clara, CA). The Foveon sensor captures the three
colors simultaneously with full coverage of the image (full
“fill factor”). Similar effect is achieved also with a three-
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chip color CCD that uses dichroic mirrors to capture the
colors simultaneously. Such devices require only a single
acquisition relative to a gray-level CCD that uses three fil-
ters sequentially and will lead to an improvement of the
SNR (assuming the same quality of the detector elements).

On the other hand, because we have chosen the num-
ber of colors and the associated wavelengths ahead of
time, data are acquired that can answer only a specific
question (e.g., measuring aneuploidy in cancerous cells).
Therefore, a fair comparison of different acquisition meth-
ods should be based on the time it takes each method for
acquiring enough information for answering the relevant
question. The problem can be formulated as follows:

In a given amount of time, what is the optimal set of
spectral-component images that enables one to interpret
the data with a given level of accuracy.

Time limitation can be critical for different reasons: high
throughput that is required in many applications, photo-
bleaching in fluorescence, or phototoxicity.

Methods for answering the question formulated above
have been treated before. They depend on the specific
spectra that have to be separated and in the case of fluores-
cence, the complexity is even higher. The fluorochromes
have to be excited at certain spectral ranges, which limits
the spectral ranges that are available to detection (24).
Zimmermann et al. (18) have formulated the problem for
the case of live-cell spectral imaging which introduces
even stronger restrictions on the acquisition times. Neher
and Neher (25) have developed a more general methodol-
ogy for solving the problem for the case of multiple fluoro-
chromes and also take into account bleaching effects.

Two of the applications described later for spectral
unmixing demonstrate two extreme solutions for quantita-
tively analyzing overlapping fluorochromes, one that uses
only two matched filters and the other that measures a full
spectrum.

SPECTRAL IMAGE PROCESSING

A spectral image usually contains hundreds of thousands
of spectra, one for each pixel. The data files are therefore
too big and complex to interpret visually and require a
comprehensive set of tools for displaying spectral-image
data, processing them and presenting the results (26).

The analysis of spectral images may be performed based
upon either the spectral features or the image features or
both.

Modern image processing methods and algorithms are,
in general, adequate and relevant for spectral imaging as
well. For a review, see Young et al. (27). Spectral analysis
is by itself a broad field. A few of the more basic algo-
rithms in spectral imaging are described later. A specific
application requires specific analysis methods that com-
bine both spectral and image analysis algorithms. An
example of such a combined image and spectral analysis is
described by Schwartzkopf et al. (28).

LINEAR DECOMPOSITION (FLUORESCENCE)

The linear decomposition algorithm, also termed spec-
tral unmixing (29), is based on the assumption that the

measured signal from each color is linearly proportional
to the concentration of that color in the object. This
assumption is correct when the absorption and fluo-
rochrome concentrations are low; otherwise correction
terms should be used. The linear decomposition algorithm
is well known, simple to implement and very fast on mod-
ern computers (30).

Assume that few fluorochromes are used in an experi-
ment, and each one labels a different entity. The fluoro-
chromes may be found either separately or as a mixture in
the image. The linear decomposition algorithm finds the
amount of each fluorochrome at each pixel. In its simplest
form, the algorithm requires measuring and saving the
emission spectra of the distinct fluorochromes prior to
the actual analysis with the same instrument conditions
(such as the microscope filter-cube). It also requires that
the separated spectra are distinguishable from one
another, and are linearly independent (none of the spectra
can be written as a linear combination of the others). This
is not a trivial assumption as the linearity criteria may be
disrupted by energy transfer between co-localized fluoro-
chromes (31). Energy transfer may lead to reduction of
the fluorescence intensity of the donor fluorochromes,
slight change in its spectrum, and increased intensity of
the acceptors. Nevertheless, the effect is usually small but
should be considered, especially when using fluoro-
chromes that are efficient energy-transfer pairs.

The algorithm and result of linear decomposition are
demonstrated in Figure 4 where three different ratios of
two fluorochromes are used (1:1, 1:2, and 2:1). If the ref-
erence spectra are known, the algorithm finds the amount
of each of the single dyes so that the addition of them all
gives a spectrum that is the most similar to the measured
spectrum. In case the reference spectra are not known,
algorithms such as similarity mapping can be used (Fig. 5).

Linear decomposition is used also in spectral karyotyping
described later by using a set of five different spectra (Fig. 6)
and deducing the correct mixture of fluorochromes at each
pixel. The results are used to identify the chromosome ma-
terial at each pixel and the results are displayed in classifica-
tion colors (Fig. 7, right). It was used also for live-imaging
analysis as described later to separate the contribution of
Histone-GFP and YFP in the Golgi (Fig. 8, see the separated
contributions in 8D and 8E) by using the reference spectra
of GFP and YFP that are considerably overlapping.

It can also be used in bright-field microscopy, though it
requires some more preprocessing as described later
(spectral unmixing for tissue section analysis). Figure 9
demonstrates the usage of the spectra for separating the
contributions of hematoxylin and eosin.

For simplicity, consider the spectrum at a single pixel.
Each spectrum of a pure fluorochrome is described as
I,() where i = 1,2 ... N represents the index of a fluoro-
chrome. The spectrum I,(A) can be viewed as a vector
with dimension that is equal to the number of points in
the spectrum, M. The concentration of each fluoro-
chrome (relative to the concentration of the measured
references) can be described by C; and the measured
spectrum can be written as I(A) = >, C;I«A). This can

Cytometry Part A DOI 10.1002/cyto.a
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be written in a matrix form where F is the matrix of the
references spectra,
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If M > N (i.e., the number of points in the spectrum is
larger than or equal to the number of fluorochromes), it is
possible to find the left-inverse matrix of E F*/ so that the
multiplication F’ X F gives an identity matrix. The values
of fluorochrome concentrations at each pixel can then be
calculated by:

Cy I(M)
C> I(Az)

J | =Fx : (2)
Cx 0)

Note that F* depends only on the reference spectra, and
can be calculated and stored before the actual measure-
ment. Because of noise, the measured data is not a perfect
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Fi. 5. Similarity mapping algorithm. The absorption spectra of tissue
stains (black) and a tested spectrum (gray) are shown. (A) Normalized
spectra. The area between the tested graph and the most-similar one
is filled (light-gray). It is calculated for all the references (B) Spectra as
measured.

linear combination of the references and therefore the cal-
culation can only provide an estimated solution for the C
values. The quality of the solution can be tested by com-
paring the measured spectrum with the predicted spec-
trum, I'(L) = F X C. The vector C must have only positive
values, and therefore a constrained algorithm must be
used that prevents a solution with negative values. One
possible method is to find the vector C that minimizes g,
the least square normal, € = IF“ - C — IV |? such that
C; > 0 for every i (32).

SIMILARITY MAPPING

In some cases, such as histological stains used with tis-
sue section, the measured spectra are a result of a com-
plex interaction of the stains with the sample and it may
not be possible to isolate the different components that
contribute to the spectrum. Therefore, the linear decom-
position method cannot be used.

In such cases, a similarity mapping algorithm can be im-
portant. It is based on information provided from the sam-

ple itself or similar samples. In this method, the user iden-
tifies unique regions from the sample such as different tis-
sue types. The average spectrum from each of these
regions is calculated and stored in a library as I,(A.) where
i is the index of each spectrum.

The similarity mapping algorithm tests the degree of
similarity of each spectrum in the image with each one of
the reference spectra (Fig. 5). A tissue section was stained
with a few stains and the spectral image of it was mea-
sured. Five different tissue structures were identified and
their spectra were saved as references (Fig. 5, black lines).
Then, a tested tissue is measured; one of its spectra is
shown in gray color. When analyzing the image, it is im-
portant to know what is the feature represented by the
spectrum. This can be done by comparing the tested spec-
trum and the saved references. A possible method is to
calculate the area in between the measured spectrum and
each one of the reference spectra. A large area means the
spectra are different and small area means that they are
similar.

More commonly, a least-square algorithm is used.
The tested spectrum is defined as I(A) and the n-
dimensional distance for each reference is calculated,

D; =/ (l;(\) =T (X))z. The reference spectrum 7 that
has the smallest distance D; is selected as the most similar.
Usually, the spectra are normalized to their area (or peak
intensity), so that only spectral shape differences are
tested.

The calculation with the five different spectra in Figure
5A gives for D; the values of 0.07, 1.04, 0.91, 0.59, and
0.84, which means that the first spectrum (solid line) is
the most similar, as can be easily seen.

Another variation of similarity mapping is to calculate
the M-dimensional angle between each reference spec-
trum and the tested spectrum (M being the number of
points in the spectrum). If we define each one of the refer-
ence spectra as a vector I; = ;51, L5z - .. I;),,), i being

Emission spectrum [arb. units]

500 550 600 650 700 750
Wavelength [nm]

Fic. 6. Spectra of the five fluorochromes that are used for SKY as meas-
ured with the SpectraCube system through a triple dichroic SKY filter
cube. Typical fluorochromes (or alike) are FITC (solid line), Rhodamine
(dash), Texas Red (dot), Cy5 (dash-dot) and Cy5.5 (solid gray). The spectral
differences allows one to use many different combinations of these dyes.
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Fig. 7. SKY measurement and classi-
fication results. Human metaphases are
hybridized with a SKY kit that contains
the appropriate combinatorial labeling
for each chromosome (Applied Spec-
tral Imaging, Migdal HaEmek, Israel).
The measured spectral image is trans-
lated to display-colors (left). The Sky-
View software analyzes the images
based on both the spectrum and the
image information. Images are segmen-
ted (left) and classified based on a refer-
ence library and the known fluoro-
chrome combinations of each chro-
mosome. The results are shown in
classification colors (right image).

Fic. 8. A-F: In vivo imaging of
EGFP and YFP fusion proteins using
488 nm excitation and simultaneous
detection in two channels (505-530
and 530-565 nm). The images show
the projections of an acquired 3D
(x,2) stack before (A-C) and after
(D-F) the mixing. A: Detection at
505-530 nm. B: Detection at 530-565
nm. C: Overlay of the channels in (A)
and (B). D: Histone-GFP in the nu-
cleus. E: YFP in the Golgi. F: Overlay
of (D) and (E). The figure reproduced
with kind permission of R. Pepperkok
(18).

Fic. 9. Spectral unmixing applied
to a pathological prostate tissue sec-
tion stained with hematoxylin and eo-
sin. (A) Color image as created from
the spectral image. It is similar to the
visual image as seen through the
microscope. (B) Optical density spec-
tra of hematoxylin and eosin as mea-
sured on reference slides. (C,D)
Results of the spectral unmixing.
They show how the tissue section oy —EOSIN D
would have looked if it were stained os5h B £ *y ===-HEMATOXYLIN J

with only hematoxylin (C) or only eo-
sin (D). Tissue section courtesy of Dr.
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the index of the reference spectrum and the tested spec-
trum as I, then the angle «; can be calculated by

i)
®; = COS
Tl - 1]

1 2 Li(h) - 1(2)
\/(lez‘(x))z : \/(le(k))z

The smaller the angle, the more similar the spectra.

= COS "

(3)

SPECTRAL UNMIXING FOR TRANSMISSION
(BRIGHT FIELD) MEASUREMENTS

This algorithm is similar to the linear decomposition
algorithm described before, but is specific to bright field
(transmission) microscopy. The method is somewhat
more complex because the important information in this
experiment is the absorption at each point that must be
calculated from the measured transmission data.

The absorption spectrum of a dye molecule is, to a good
approximation, linearly dependent on the concentration
of the molecules c, the light path length in the sample /,
and on the extinction coefficient ¢(A) that describes the
probability of one molecule to absorb light quanta at
wavelength A. This approximation may fail if the absorp-
tion is relatively high, but this case will not be discussed
here. The absorption can be found by using the Beer-Lam-
bert law:

I(\) = Ih(A) - 1078)e! (4)

where I()) is the measured spectrum (that is the transmis-
sion measured through the sample) and I,(}) is the spec-
trum of the light source as measured with the same condi-
tions without the sample. These spectra would be defined
here in dimensions of flux, i.e. photons/cm?/s/wavelength
[ecm %s 'nm™'].

An index j is used to distinguish different absorbing
molecules, sj(X). The dimensionless term at the exponent
of Eq. (1) is called the absorbance,

ABSORBANCE = £(A) - ¢ - 1 (5)

As one can see, the absorbance is linear with the number
of molecules along the optical path in the sample. There
are different unit-conventions for this equation. We use
the extinction coefficient in molar density MY em™ Y
and the molecules concentration ¢ in mol/L (33) (M, the
molar, has units of mol/L).

An absorbance of 0.3, 1, and 2 relates to absorption
values of 50, 90, and 99%, corresponding to transmission
of 50, 10, and 1%. With typical spectrometric instrumenta-
tion, the absorbance can be measured over at least four
orders of magnitude but it is reduced with imaging appli-
cations due to higher noise levels.

When the sample contains few absorbing stains,
the transmission spectrum has a complex structure
(34). The absorbance depends on the different absorbers,

A = > ;€M) - C; - I;, which is similar to the case of fluo-
rescence, with the preliminary step of calculating it from
the measured transmission, A(L) = — log (I(L)/Ip(M)). The
division operation can insert significant amounts of noise
especially where there is a low signal. This requires that
we consider excluding the “tails” of the spectra where the
intensity is weak.

If the absorption spectra of the different stains are mea-
sured separately, it is possible to calculate the concentra-
tion of each stain in each pixel of the image. It also
requires that the absorption spectra of each stain do not
change locally on the sample, a condition which is usually
met.

A few studies have indicated the applicability of spectral
imaging for multiple color bright-field applications. See,
for example, the work by Ornberg et al. on histological
sections (35) and Macville et al. (36) on tissue sections
and cervical smears using different types of stains.

Some of the stains, for example diaminobenzidine, are
actually scattering polymers, not absorbers. The conse-
quence of this is that the quantitative analysis of such
stains may not be correct because the linearity assumption
does not hold.

NONSUPERVISED METHODS AND PRINCIPLE
COMPONENTS ANALYSIS

The spectral analysis methods described earlier belongs
to a family of algorithms called supervised classification
methods. Such methods require reference input by the
user, such as a spectral library of the expected classes. In
contrast to that, nonsupervised classification methods do
not require reference spectra as an input. In these meth-
ods, a mathematical algorithm determines the different
groups of spectra based on their spectral properties. This
approach is frequently described as clustering and may
involve only a minimum of a priori information such as
the number of stains that have been used. The user should
still test the validity of the results and, at some point, tune
various parameters.

One of those algorithms is principle component analy-
sis (PCA). It uses statistical analysis of the whole data set
(all the spectra in the image) and finds the similarities and
differences in the data (37). PCA does not require spectral
reference curves and the main features of the data are
automatically found during the analysis. The statistical
analysis finds a small set of spectra that represents the
whole dataset. The first spectrum in the set is a spectrum
that contributes the most to the spectra in the image; the
second one contributes less, and so on.

The principle spectra that are found by PCA represent
special classes of the measured objects (e.g., a cancer ver-
sus a normal cell).

APPLICATIONS

Spectral imaging provides tools that are useful for a vari-
ety of applications. The spectral information allows
detecting and distinguishing among many different fluoro-
chromes even if they have a similar color or overlapping
spectra. This permits one to label different entities in a
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sample simultaneously and to quantitatively analyze each
entity. The spectral information can also be used to distin-
guish the “real” stain from unwanted contributions such
as autofluorescence that are physically significant in some
cases but biologically irrelevant. It is also possible to study
spectral changes which are indicative of a process that the
sample experiences. A few of the applications are de-
scribed in the following.

Observation of Multiple Colors

In many cases, there is a need to observe simulta-
neously few or many dyes (both fluorescence and bright
field) in order to identify a number of proteins, genes or
organelles and their co localization. Even though there are
many different dyes, many of them have a similar color so
that only a few can be distinguished by eye or by a simple
color filtering technique. Spectral imaging enables to over-
come this obstacle.

In fluorescence, it is necessary to excite all the dyes,
but the emission spectral range cannot overlap with the
excitation range. This means that part of the spectral
range that is used for excitation cannot be used for detec-
tion. To overcome these difficulties, multiband filters are
used so that more than one fluorochrome can be detected
in each band of the filter. This usually prevents using two
dyes for which the excitation of one overlaps with the
emission of the other.

Spectral karyotyping. An example of such an applica-
tion is spectral karyotyping or SKY (15,38,39), probably
the most wide-spread application of spectral imaging to
date. SKY is based on fluorescence in situ hybridization
(FISH). Five different fluorochromes are used (Fig. 6) to
label each one of the 24 human chromosomes (or other
species). Each chromosome is labeled with a different
combination, as an example, chromosome 2 is labeled
with Cy5.5 and chromosome 3 is labeled with FITC, Rho-
damine, Cy 5 and Cy5.5. With 5 fluorochromes, there are
2°—1 = 31 different possible combinations. As a result,
the spectra that are measured at each pixel are a weighted
combination of the single-fluorochrome spectra that are
shown in Figure 6.

Spectral images are usually acquired with a 63X or
100X objective lenses with high NA (1.3-1.4) in the range
of 450-780 nm and with a spectral resolution of 10 at 500
nm. The spectral data is displayed as an RGB image where
the green fluorescence is displayed in blue, orange and
red is displayed as green and the far-red is displayed as red
(Fig. 7, left). The spectral images are then processed and
analyzed with spectral and imaging algorithms. The spec-
tral image is segmented (Fig. 7, left) and each pixel is clas-
sified based on its spectrum, a reference library of the five
fluorochromes spectra and a table of the combination
labels of each chromosome (Fig. 7, right). The classifica-
tion results are displayed in classification colors where
each color represents a different chromosome. The classi-
fication can be further tested and analyzed by observing
the spectrum at each pixel, comparing it to the references
and testing the fluorochrome-mixtures that are found by
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the linear decomposition algorithm that is used by the sys-
tem. The high specificity of the acquired spectral data
enables a successful classification in the vast majority of
the slides preparation, even on complex tissue sections. It
is therefore used intensively for both diagnostics and
research (15,38,39).

Similar approaches called M-FISH and COBRA-FISH have
been developed by using a set of matched filters instead of
measuring the spectral images and provides similar infor-
mation (40,41). In another approach, seven color analyses
of immunofluorescence-stained tissue samples have been
performed (42) with a Fourier-based spectral imager by
acquiring spectral images with three different filter sets.
Pautke et al. used a similar method for observing eight cal-
cium-binding fluorochromes for studying bone-formation
(43). Gao et al. have used spectral imaging for observing
bioconjugated quantum dots for cancer targeting in vivo
in mice, and have shown the power of spectral imaging to
eliminate autofluorescence signal (11). Eight color immu-
nofluorescence has been achieved by using a laser-scan-
ning cytometer in combination with filter sets (44,45).

Live Cell Spectral-Imaging

A spectral image takes a long time to measure. For live-
cell imaging, a compromise on the spectral resolution can
provide an adequate solution, in contrast to the SKY
method described earlier. The following example, based
on the works published by Pepperkok and coworkers
(18,46), was designed to allow fast multicolor time-lapse
microscopy and fluorescence resonance energy transfer
measurements in living samples. Even though it uses only
a very few wavelength, we believe that such methods
have the potential to be extended to full real-time spectral
imaging. Nuclei were labeled with histone-EGFP and the
Golgi complex with a Golgi-targeted YFP (two fluorescent
proteins). Two filters were designed for measuring the
emission from the image using simultaneous detection
and subsequent emission unmixing (Fig. 8). The sample
was excited at 488 nm with an ArKr laser and the fluores-
cence signal was split into two channels detecting the
505-530 nm and 530-565 nm range, respectively. The fil-
ters were selected based on prior knowledge of the indivi-
dual fluorescent proteins’ spectra. An emission beam split-
ter (DualView, Optical Insights, Tucson, AZ) was used for
splitting the two spectral channels into two different areas
of the CCD. Figure 8 shows projections of an acquired 3D
stack (see caption).

Spectral Unmixing for Tissue Section Analysis

In bright field measurements, the full spectral range is
available for detection; there is no need for selective spec-
tral-excitation as in fluorescence. The signal is bright, the
SNR is high, and there are, in general, no bleaching pro-
blems. On the other hand, mixtures of stains may have
a complex spectrum and the more stains that are added,
the more “brown” the sample gets, simply because of the
large absorption of light by the many stains. This is the
case in histological staining when multiple features have
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to be detected. Spectral imaging can provide significant as-
sistance.

Spectral unmixing allows one to analyze »n stains (e.g.,
chromogens) in brightfield mode and calculate the con-
centration of each. Moreover, it allows one to separate the
complex color-image into a set of single color images
where each one of them shows the sample as if it were
stained with only a single stain. It, therefore, has the
advantage that many stains can be used simultaneously
while it is still possible to visually analyze it as if it were
stained with a set of single stains. By correlating the sin-
gle-stain distribution, it also provides information on the
co-localization of structures, proteins and other entities.
The methods require that the absorption spectra of the
chromogens that are used do not change significantly as a
function of the local environment, a condition that has
been tested and found to be correct.

Spectral unmixing requires three steps after the sample
preparation and spectral image measurement. In the fol-
lowing example a pathological prostate tissue section was
stained with hematoxylin and eosin (Fig. 9). Spectral
images were measured with the SpectraCube SD200 sys-
tem (Applied Spectral Imaging, Migdal HaEmek, Israel) in
the range of 400-800 nm and with a spectral resolution of
10 at 500 nm on a bright field Nikon Eclipse ES800 micro-
scope (20X objective lens, NA = 0.75). The light source
was a 100 W 12 V tungsten halogen lamp with a BG38 fil-
ter to block infrared light.

Spectral unmixing includes the following three main
steps:

1. The single stains and light source spectra are meas-
ured on a reference known sample, such as a set of con-
secutive tissue sections, and the absorbance of each one,
A; = €;(V) - ¢; - I; is calculated and saved in a library (Fig.
9B). Then, the spectral image of the sample is measured
(Fig. 9A) and the concentration of each stain is calculated
based on the formalism described earlier (image process-
ing section). This provides the concentration of each stain
at every pixel. Figure 9A shows a color image that is re-
created from the spectral image. It is similar to the image
that would have been measured with a color camera.

2. Using «y, it is possible to calculate the absorption
spectrum that will result if the sample would have been
stained with only a single stain, (X)) = «; * €\). This in-
formation is now used to calculate the transmission spec-
trum that would be measured if only a single stain were
used, T#QO) = Io(W)10~ %P,

3. The color image is calculated from the transmission
spectrum by using the three visual color response func-
tions (for red green and blue) and integrating the intensity
for each color. This allows the display of the 7 different
color images for each stains (Figs. 9C and 9D).

Spectral unmixing was performed using the Spectra-
View™ software after measuring the spectral images with
the SpectraCube™ (Applied Spectral Imaging) on a hema-
toxylin and eosin stained prostate tissue section with ref-
erence spectra acquired from serial-section single-stained

images (Fig. 9). Three reference spectra were used: hema-
toxylin, eosin, and the white background spectrum (trans-
mitted light source spectrum at the plane of focus). Figure
9B shows the absorption reference spectra (as defined
above) measured in optical density units. After conversion
to spectral optical density data (as described earlier), the
spectral data were unmixed. Repeating previous argu-
ments, conversion to optical density is necessary because
the amount of any dye is linearly proportional to the opti-
cal density value but is not linear with respect to the R, G,
or B intensity values. This is not crucial for hematoxylin or
eosin neither of which is intended to be a quantitative
dye-but it is crucial to obtaining correct dye amounts from
immunohistochemistry stains or from DNA quantitation
using the Feulgen reaction.

In Figure 9, the prostate cancer tissue is in the center of
the image. The bottom right has connective tissue that is
heavily stained with eosin. Eosin is present in the cyto-
plasm and the nuclei of every cell. Visually, nuclear eosin
is masked by the presence of hematoxylin but spectral
unmixing reveals the nuclear eosin.

DISCUSSION AND CONCLUSIONS

Spectral imaging is an active field, made possible
through the advances in CCD detectors, dispersion optics,
and spectral image processing algorithms. A number of
systems are now available and spectral imaging is a well
established technique. In this article, a few of the optical
methods, image processing algorithms, and measurement
methods have been described and presented with a few
examples.

With existing detectors, which are at most 2D in nature,
a spectral image can be measured only by acquiring multi-
ple images of the object. This makes the acquisition rela-
tively slow and inappropriate for applications that require
high-speed measurements or samples that cannot tolerate
excessive exposure to light. This has led to the develop-
ment of methods that compromise spectral and spatial
requirements, but still provide the desired information.
We believe that further technological advances will lead
to the development of new architectures for detector sys-
tems that will allow significantly faster spectral image
measurements.

Spectral imaging can be used in imaging modes such as
fluorescence and transmission. Each of these, however,
requires a different analysis and interpretation approach.

Still more imaging modalities and the associated applica-
tions will be included in the coming years, broadening the
practical usage of spectral imaging.
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