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SUMMARY 
In this appendix we have provided an outline for methods used in analyzing molecular biology 
data.  We have given a summary of types of data encountered and the appropriate methods to 
apply for the questions of interest.  Statistical techniques described include the t-test, the 
Wilcoxon rank sum test, the Man-Whitney-Wilcoxon test, ANOVA, regression, and the Chi-
Square test.  For each method we have given the appropriate assumptions, the details of the test, 
and a complete concrete example to follow.  We have also discussed related ideas such as 
multiple comparisons and why correlation does not imply causation. 
 
Keywords: Data Analysis, Hypothesis Testing, Confidence Intervals 
 
 
Statistical Analysis 

INTRODUCTION 
This appendix was written as a reference guide for data analysis of biological experiments. It 
should not replace a course in introductory statistics, but rather serve as a reminder of concepts 
learned in that course. For those interested in a deeper refresher or more derivations, we 
recommend the following textbooks: 
 
 Introduction to the Practice of Statistics by Moore and McCabe (2006) 
 Mind on Statistics by Utts and Heckard (2004) 
 Primer of Biostatistics by Glantz (2005) 

Notice that the approaches provided below, summarized in Table 3, do not constitute a complete 
list of all possible statistics methods. It is possible that your data will need more sophisticated 
analyses, in which case you should consult a statistician or a post-introductory text book. 
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We have tried to be clear about which method to use with which type of research question and 
data. However, if you are unsure, the references above can give a more complete picture of 
methods and their appropriate uses. Be sure to graph the data and to check assumptions like 
independence carefully. 

Data 
Before deciding what test or method to use, you have to know a little about the data you have 
collected and the questions you’d like to ask.  Many methods require independent data.  Two data 
points are independent if knowledge of the first point gives no information about the value of the 
second point.  For example, pre-test and post-test scores on the same individual are not 
independent.  Two scores on two different individuals are independent. 
We break data up three different ways: 

1. Explanatory vs. Response  
• Explanatory - an explanatory variable is used to explain or predict any outcome.  
• Response - a response variable measures the outcome of interest.  

Example If you are interested in measuring the difference in two diets, the explanatory 
variable would be the diets (diet 1 vs. diet 2) and the response variable would be the 
number of pounds lost by each participant in the study. 

2. Numeric vs Categorical  
• Numeric - a numeric variable is one which takes numerical values. A numeric variable is 

either discrete or continuous as described below.  
• Continuous - a numeric variable which is measured on a continuous scale. (height, 

weight, age, time).  
• Discrete - a numeric variable which may take on only a finite number of values and 

usually arise from counting situations (number of offspring). 
• Categorical variables - a categorical variable does not take on numeric values but rather can 

be placed into groups or categories such as those described below: 
• Binary or dichotomous - having only two levels like gender or on/off.  
• Multichotomous - having multiple levels like race or grade level. 

3. Quantitative vs. Qualitative  
• Quantitative (numerical) variables are measured on a numeric scale. These can be 

continuous (e.g. height) or discrete (e.g. grade in school).  
• Qualitative (categorical) variables are measured as categories.  

 
Parameters 
Standard symbols will be used to represent parameters of interest are presented in Table 1. 
Table 1 Standard Symbols used to Represent Parameters of Interest 

Definition Parameter 
Population Mean μ 
Population Median θ 
Population Variance σ2 
Population Standard Deviation σ 
Population Standard Error of the Mean σ/ n 
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Population Proportion p 
Population Regression Slope β1 
Population Correlation ρ 

Statistics 
Standard symbols will be used to represent statistics of interest, as outlined in Table 2. 
Table 2 Standard Symbols used to Represent Statistics of Interest 
 Statistic Definition 
Sample Mean x̄ 1

n ∑
i=1

n
 xi 

Sample Variance s2 1
n-1 ∑

i=1

n
 (xi-x̄)2 

Sample Standard Deviation S s2 
Sample Standard Error of the 
Mean 

s/ n 
 
s2

n  

Sample Proportion p$  # of successes
n  

Sample Regression Slope b1 see references 
Sample Correlation r see references 
  
Table 3 Summary of the Statistical Analysis Discussed 
Variables in Dataset Example Method(s) Page 

Testing average blood pressure 
(against a known value) 
 
 

One sample t-test 
Wilcoxon Rank 
Sum 
 

7 
9 

Estimating average blood 
pressure 

CI for μ/θ 8/10 

Testing blood pressure before 
and after treatment to 
determine if there is a 
difference 

Paired t-test 
Wilcoxon Rank 
Sum 

10 

 
one continuous response variable 
 
 
 
 
 
 
(optional: a binary pairing variable) 

Estimating average change in 
blood pressure before and after 
treatment 

CI for μ 10 

Testing the difference in 
average pounds lost for two 
different diets. 

Two sample t-
test 
Mann-Whitney-
Wilcoxon 

11 
 
14 

one binary explanatory variable 
one continuous response variable 

Estimating the difference in 
average pounds lost for two 
different diets. 

CI for difference 
in μ/θ 

11/14 

One binary response variable Estimating the cure rate of 
some treatment or testing 
against a known value 

Inference for a 
single p 

15 
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Testing whether gender and pet 
ownership are independent 

Tests of 
proportions 
Chi-square test 

16 
 
24 

One binary response variable 
One binary explanatory variable 

Estimating the differnece in 
proportion of men who are pet 
owners versus women who are 
pet owners 

CI for difference 
in proportions 

16 

 
one multichotomous explanatory 
variable 
one continuous response variable 

Testing the difference in 
average GPA for different 
grade levels. 

ANOVA 
Multiple 
comparisons 

18 
19 

Predicting weight (response) 
from height (explanatory) 
 

Simple Linear 
Regression 
 

20 one continuous explanatory variable 
one continuous response variable 

Correlating weight and height Correlation 22 
two binary or multichotomous variables 
 

Testing whether race and 
political party are independent. 

Chi-Square test 24 

 

Inference 
General Advice for Running Analyses 
Typically there are two ways to analyze data: hypothesis testing and confidence intervals. Both 
methods respond to questions about populations using sample data. So, research questions should 
ask something related to a population of interest, and the analyses should be done using sample 
data which was collected. 
Hypothesis Testing 
In general, there are two hypotheses. A null hypothesis is a statement about the population that 
nothing interesting is going on. An alternative hypothesis is a statement about the population 
which would be of interest to the research community. Generally, the alternative hypothesis 
corresponds to the research question being asked. If a null hypothesis is rejected in favor of the 
alternative hypothesis, this is an indication that the research question is true. The null hypothesis 
is rejected if the p-value of the test is small enough. p-values are discussed below. 
In general, every test of hypothesis follows the same basic steps: 

1. The null and alternative hypothesis (H0,H1 respectively) are formed based on some 
research question. 
For example, if testing a chemical’s ability to act as an antibiotic (i.e., kill bacteria), the 
null hypothesis would be “The chemical does not kill more bacteria than a control 
compound,” while the alternative hypothesis would be “The chemical kills more bacterial 
than a control compound.” 

2. A test statistic is calculated based on a sample of representative data.  
A number of plates would be grown with either the test compound or a control compound, 
and the number of colonies grown over a set period of time would be counted.  

3. A decision to reject or to not reject the null hypothesis is made based on how likely the 
data are given a true null hypothesis. 
If the p-value obtained by comparing the number of colonies appearing after incubation 
on plates with antibiotic versus those without is <0.05, the researcher can assume that the 
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null hypothesis (i.e., “The chemical does not kill significantly more bacteria than a control 
compound.”) is false. 

A p-value is the probability of seeing the observed sample data or data which is more extreme if 
the null hypothesis is true. A very small p-value, will suggest that the original assumption (the 
null hypothesis being true) is false. A null hypothesis is rejected if the p-value is less than the 
level of the test, α. Most often a level of α=0.05. Occasionally levels of α=0.10 or α=0.01 are 
used. The α–level represents how often you make a false positive error.  You are responsible for 
stating the false positive error rate for your experiment.  A rejected null hypothesis is often 
referred to as statistical evidence or significant evidence of the research question being true (i.e. 
H1).  

For example, suppose a coin is tossed 10 times, each time resulting in heads. You might reject 
the hypothesis that the coin is fair (H0:p=0.5, where p is the true probability of heads) in favor of 
the hypothesis that the coin is not fair (H1:p≠0.5). Since the probability of observing results as 
extreme when the coin is fair (the null hypothesis is true) is small (p-value = 0.002). 

If the p-value is greater than α=0.05 we are unable to say which of the hypotheses is true. A 
correct interpretation of a large p-value is: “The data do not provide evidence to reject the null 
hypothesis."  A p-value of 0.05 is equivalent to saying that if the null hypothesis is true, data like 
those collected would happen 5% of the time. 

Confidence Intervals 

Sometimes an estimate of a population parameter is desired instead of testing a particular claim 
about the population. For example, interest might be in estimating the average blood pressure of 
women taking Hormone Replacement Therapy (HRT). When estimating a population parameter, 
using a confidence interval is the appropriate method of analysis. A confidence interval is a set 
(an interval, in fact) of values which serves as an estimate of a population parameter. 

Typically, 90%, 95%, or 99% confidence intervals are used. Consider a 95% confidence interval 
for some population characteristic, the population mean μ, say. A mathematical derivation shows 
that out of all possible samples of size n, 95% of the intervals will contain the true population 
value. 

The correct interpretation of a 95% confidence interval is, “I am 95% confident that the true 
population parameter lies within the endpoints of the interval." Or, “I am 95% confident that the 
true average blood pressure of women on HRT is between the bounds I have calculated." It 
would be incorrect to say “There is a 95% probability that the true blood pressure of women on 
HRT lies within the bounds I have calculated." Once the interval has been calculated, there is no 
more probability associated with the result. 

Errors in Inference 

As alluded to above, there is no way to know for sure which hypothesis is in fact true. One only 
has evidence to suggest which is true. At times, because of random variability, the data suggest a 
hypothesis which is in fact false. When this occurs, it said than an error has occurred. There are 
two possible types of errors which can be made when conducting statistical analysis.  
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The first type of error, a type I error happens when the null hypothesis is incorrectly rejected. 
Type I errors happen, on average, at a rate of α, usually 0.05. So, 5% of the time when the null 
hypothesis is in fact true, the data will indicate that the null hypothesis should be rejected. 

A type II error happens when a false null hypothesis is not rejected. The rate of type II errors 
cannot be directly controlled and depends on what the actual (unknown) population values are. 
Because the rate of type II errors is unknown, the statement of “fail to reject the null hypothesis" 
is preferred to “accept the null hypothesis". 

Note that the errors in inference are not the same as measurement variability.  A larger sample 
size will reduce the type II error.  Type I error is fixed (typically at 0.05.) 

Graphics 
A graphical analysis of the data is a very important part of the data analysis process. In addition 
to giving a pictorial representation of the data, graphics allow the analyst to check any 
assumptions for the desired statistical method/procedure. Several useful graphical tools exist for 
this particular purpose. We will primarily use boxplots and scatterplots, but histograms and 
quantile-quantile plots (not described here, see references in introduction for information on 
histograms and quantile-quantile plots) are also extremely useful tools. 
 
A boxplot is a representation of a univariate (one variable) set of data.  The middle line 
represents the median (or 50% point), and the outer edges of the box represent the 25% point 
(lower quartile) and the 75% point (upper quartile.)  The whiskers extend to the minimum and 
maximum values within a certain threshold.  If the minimum (or maximum) value is outside of a 
threshold, the minimum (or maximum) value will be represented by a point.  See figures 1-6. 
 
Figure 1 represents the data of birth weight of children whose mothers smoked.  50% of the 
mothers delivered babies who weighed less than 108.5 oz;  25% of mothers delivered babies who 
weighed less than 99.5 oz; 75% of mothers delivered babies who weighed less than 121 oz.  The 
smallest baby in the dataset weighed 74oz, and the largest weighed 147oz. 
 
A scatterplot is a representation of a bivariate (two variables) set of data.  The x-axis represents 
the value of the first variable and the y-axis represents the value of the second variable.  Each 
individual is given by a dot in the x-y plane.  See figures 7-8. 
 
Figure 7 represents the speeds of 47 independent lizards at 20°C and 35°C.  We can see that 
there is a positive relationship between the two variables.  However, because of the natural 
variability, we cannot predict perfectly the speed at one temperature from the speed at the other 
temperature. 

Sample Sizes 
For each of the methods we have given general sample size requirements. These should be used 
as a guide and not absolute law. In certain cases larger sample sizes may be required for the 
methods to be valid. Also, in rare cases, smaller sample sizes may be sufficient. As a general 
rule, when it comes to sample sizes, think bigger is better.  As mentioned in the section on errors, 
a larger sample size will reduce the type II error.  That is, if the true state of nature is “significant 
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differences”, the data are more likely to demonstrate significant differences with a larger sample 
size.  The guidelines for sample sizes are given within each methodological section. 
 
Note, n represents the number of independent measurements needed or taken.  If there is 
measurement error, multiple measurements may need to be taken on each independent individual.  
Doing so will create two sources of variability: within variability and between variability.  
Analysis of such data is called repeated measures analysis and is outside the scope of this 
appendix.  However, taking the average (or median) of a few repeated measurements will usually 
provide reasonable data with which to work. 

Parametric versus Nonparametric 
Parametric methods assume an underlying distribution (usually normality) of the data; 
nonparametric methods do not assume a known structure of the data.  For the majority of topics 
which we discuss, we have included both parametric and nonparametric methods. In general the 
nonparametric approaches require fewer assumptions than their parametric counterparts. The 
parametric approaches are exact when the underlying population is normal, otherwise the 
inference is approximate. The approximation gets closer as the sample size increases. Though, 
exact inference for the nonparametric methods exist regardless of sample size, we have chosen to 
only discuss the approximate versions. As with the parametric approaches, the approximations 
for nonparametric approaches decline as the sample size increases. Most software packages allow 
the user to chose between exact and approximate inference for the nonparametric methods. For a 
thorough treatment of nonparametric methods, see Hollander & Wolfe (1999). 
 

Statistical Software 
There are many statistical software packages, in the following table we list only the ones which 
we are most familiar with. The analyses in this appendix were done using R. 
 
Table  4 Statistical Software 
Name www Interface Free or 

Open 
Source 

Arc www.stat.umn.edu/arc/software.html GUI and Command line Yes 
JMP www.jmp.com/ GUI No 
Minitab www.minitab.com/ GUI or Command line No 
R www.r-project.org/ Command line Yes 
SAS www.sas.com/ Command line No 
S-PLUS www.insightful.com/products/splus/default.asp GUI or Command line No 
SPSS http://www.spss.com/ GUI and Command line No 
 
 

THE ONE SAMPLE LOCATION PROBLEM 
The one sample location problem is concerned with inference on the center (mean μ or median θ) 
of a single population. For example, one may want to estimate the average blood pressure of 
some population or to test if (on average) a certain drug contains the correct amount of active 
ingredient. 
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Parametric Procedures 
Assumptions  
• The response variable is measured on a numeric scale.  
• For symmetric populations n≥15 otherwise n≥30.  Symmetric populations are those that have 
the same type of distribution of values on the left and right side of the center.  For example, 
income is typically not symmetric because of the extremely large values.  Height is typically 
symmetric because there is the same spread of heights above the mean as below the mean. 

Inference 
 
Both the interval estimate and the hypothesis test are based on a t-test which gives a range of 
plausible values for the mean of the population (interval estimation) or tests a value of interest 
(μ0) for the mean of the population (hypothesis testing.) 
 

Interval estimation  
A (1-α)*100% confidence interval for μ is  
 

 x̄±t1-α/2,n-1 
s

 n
.  

Equation 1 
Hypothesis Testing  
The t-statistic is  
 

 t*= 
x̄-μ0

 
s

 n

. 

Equation 2 
Hypothesis are shown in Table 5 
Table 5 Decision rules for the one sample t-test 
Hypotheses Decision Rule p-value 
H0:μ=μ0 vs H1:μ≠μ0 Reject H0 if |t

*|>t1-α/2,n-1  2*P(tn-1>|t*|)  
H0:μ≥μ0 vs H1:μ<μ0 Reject H0 if t

*<-t1-α,n-1  P(tn-1<t*)  
H0:μ≤μ0 vs H1:μ>μ0 Reject H0 if t

*>t1-α,n-1  P(tn-1>t*)  
 
Example  
Suppose that we are interested in estimating the mean birth weight of children whose mother 
admitted to smoking during pregnancy. Suppose a sample of size n=47 is taken resulting in a 
sample mean of x̄=109.5 ounces and a sample standard deviation of s=15.8 ounces. The actual 
data are given in the example for the nonparametric test in the next subsection, a plot of the data 
is in Figure 1. 
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A birth weight of 116 ounces is considered typical. The research question we wish to answer is: 
does smoking during pregnancy result in lower birth weights, on average?  
That is we wish to test the hypotheses  
 
 H0:μ≥116 vs H1:μ<116. 

Equation 3 
Using the equation for a t-test statistic from above we see that the test statistic we observe for 
these data is  
 

 t*= 
109.5-116
15.8/ 47

=-2.82. 

Equation 4 
Since t*=-2.82<-1.68=-t0.95,46   we conclude that there is significant evidence to reject the null 
hypothesis. There is significant evidence that smoking is linked with lower than typical birth 
weight.  (The t-value of -1.68 was computed from a t-table with 46 degrees of freedom and 0.95 
probability to the left.  Once you have a t-table, from software or a textbook, use degrees of 
freedom = n-1.  The degrees of freedom simply point to the correct table.) 
 
A 95% confidence interval for the true mean birth weight of children whose mothers admitted to 
smoking during pregnancy is 109.5±2.01*15.8/ 47 or (104.87 ounces, 114.13 ounces). Note 
that 2.01 is the t-value from a t-table with 46 degrees of freedom at 97.5% (which gives 2.5% 
error on each side of the confidence interval.)  We are 95% confident that the true mean birth 
weight for all children born to mothers who admitted to smoking during pregnancy is between 
about 104.87 and 114.13 ounces. 

Nonparametric 
There are several nonparametric approaches to the one sample location problem. The sign test is 
a very general test which requires almost no assumptions. We will take a large sample Wilcoxon 
approach which assumes symmetry of the underlying population. See, for example, Hollander & 
Wolfe (1999) for Wilcoxon small sample methods as well as additional methods based on the 
sign test. 
Assumptions  
• Data are measured on a numeric scale.  



 10

• The data are fairly symmetric.  
• n≥20  
Hypothesis Testing 
The Wilcoxon signed rank test statistic is defined as  
 

 T+= ∑
i=1

n
 R(|xi-μ0|)I(xi-μ0).  

Equation 5 
 

Where R(|xi-μ0|)  denotes the rank of |xi-μ0| among |x1-μ0|...|xn-μ0| and I(xi-μ0)  is the indicator 
function which takes value 1 when xi-μ>0 and 0 otherwise. 
For large samples we may use the test statistic  
 

 z*= 
T+-n(n+1)/4

 n(n+1)(2n+1)/24
.  

Equation 6 
With hypotheses as given in Table 6. 
 
Table 6 Decision Rules for the Wilcoxon signed rank test 
Hypotheses Decision Rule p-value 
H0:θ=θ0 vs H1:θ≠θ0 Reject H0 if |z

*|>z1-α/2 2*P(Z>|z*|)  
H0:θ≥θ0 vs H1:θ<θ0 Reject H0 if z

*<-z1-α P(Z<z*)  
H0:θ≤θ0 vs H1:θ>θ0 Reject H0 if z

*>z1-α P(Z>z*)  
 
Interval Estimation  
An interval estimate for the population median, based on the Wilcoxon signed rank, is the 
interval of values such that the null hypothesis is not rejected. See, for example, Hollander & 
Wolfe (1999). 
Example  
We use the same example as we did for the parametric analysis. The sorted data of sample brith 
weights are presented below.  
 
  74  81  87  88  88  89  89  92  98  98  99 100 100 100 102 104 
104 104 106 
 106 107 107 108 109 109 111 111 113 113 113 115 117 117 119 120 
121 121 121 
 123 123 124 125 130 132 141 142 147 
 
Judging from the boxplot (see figure 1), the assumption of symmetry seems quite valid. That is, 
there are just as many points above as below the median; also the distance from the 25% to the 
minimum value is about the same as the distance from the 75% to the maximum value.  The plot 
tells us that the assumptions for the statistical method are not violated.  The value of the 
Wilcoxon signed rank test statistic for these data is T+=303. The large sample standardized test 
statistic is  
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 z*= 
303-47*48/4

 47*48*95/24
=-2.76. 

Equation 7 
Using a -z0.95=-1.96 as our critical value we see that we can reject the null hypothesis and 
conclude that smoking is related to lower birth weight. Also, p-value = 0.0029. 
The software package R reports (104.5 ounces, 114.0 ounces) as a interval estimate of the true 
median birth weight of children whose mothers admitted to smoking based on the Wilcoxon 
signed rank test. 

Paired Designs 
A paired design, sometimes referred to as matched pairs, occurs when two repeated 
measurements are taken of the same individual or experimental unit or when measurements are 
taken on pairs of subjects or experimental units which are matched somehow. The parametric 
analysis of such data is often called a paired t-test.  For other methods (including the 
nonparametric analysis), there is often a “paired” option in the statistical software.  For two 
examples, measurements of siblings on two different treatments are matched; a baseline 
measurement on some individual and then a measurement on the same individual taken after 
some treatment is also matched. 
A paired data analysis is a one sample analysis performed on the differences of the response 
variables.  The null and alternative hypotheses almost always address the question of whether the 
pairs are different; that is, do they have a difference of zero. 
Analysis 
These data where taken from Hettmansperger & McKean (1998). The data consist of 15 pairs of 
heights in inches of cross-fertilized and self-fertilized plants, each pair grown in the same plot 
(Figure 2). The data are given below. 
 
cross: 
 23.500 12.000 21.000 22.000 19.125 21.550 22.125 20.375 18.250 
21.625 23.250 21.000 22.125 23.000 12.000 
self: 
  17.375 20.375 20.000 20.000 18.375 18.625 18.625 15.250 16.500 
18.000 16.250 18.000 12.750 15.500 18.000 
differences: 
  6.125 -8.375  1.000  2.000  0.750  2.925  3.500  5.125  1.750  
3.625 7.000  3.000  9.375  7.500 -6.000 
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Parametric analysis 
The output from the software package R is given below.  
 
 
        One Sample t-test 
 
data:  diff 
t = 2.1506, df = 14, p-value = 0.04946 
alternative hypothesis: true mean is not equal to 0 
95 percent confidence interval: 
 0.007114427 5.232885573 
 

As we can see the t-test is only marginally significant at the α=0.05 level (p-value = 0.04946). 
Nonparametric analysis 
Again, we include the output from the software package R.  
 
        Wilcoxon signed rank test 
 
data:  diff 
V = 96, p-value = 0.04089 
alternative hypothesis: true mu is not equal to 0 
95 percent confidence interval: 
 0.4999872 5.2125081 
 

The results for the Wilcoxon analysis are similarly borderline (p-value = 0.04089). 

THE TWO INDEPENDENT SAMPLES LOCATION PROBLEM 
The two sample location problem is concerned with inference on the change in means 
(parametric approach) or the change in medians (nonparametric approach) between two treatment 
or experimental groups. For example, one might be interested in testing if the LDL cholesterol 
levels of a group of treated quail are lower than a group of untreated quail. Or one might be 
interested in estimating how much taller, on average, adult males are than adult females. Note if a 
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population is symmetric then the population mean is equal to the population median, which is the 
situation represented in the plots below (see figure 3) and discussed in the next paragraph. 
The boxplots below (see figure 3) represent two typical situations for the two sample location 
problem. The plot on the left represents a case where either the MWW test for medians or the 
pooled t-test for means is appropriate. The plot on the right represents a case where the unpooled 
t-test is appropriate. 
 
[*Figure 3 here] 
 
Data  
Suppose we are interested in comparing two populations, X and Y. We take a sample of 
observations from each of the two groups or under the two experimental conditions. Let x1,...xm 
be a random sample of size m from population X. Let y1,...yn be a random sample of size n from 
population Y. 

Parametric 
There are two types of t-tests for the two sample problem, the pooled and unpooled. The pooled 
requires the distributions differ only in location but are similar in terms of variability. The 
unpooled requires the shapes of the two populations be the same but does not require the 
variability of the two populations to be the same. When the assumptions of the pooled analysis 
are met, the pooled analysis results in a more efficient (that is, fewer samples needed) analysis 
than the unpooled counterpart. 
In both cases μX represents the true mean of population X, and μY represents the true mean of 

population Y. Further x̄ and sx denote the sample mean and sample standard deviation of the m 

observations x1,...,xm . Likewise ȳ and sy denote the sample mean and sample standard deviation 
of n observations y1,...,yn .  

Unpooled inference 

Assumptions  
• The response variable is numeric.  
• The two distributions have the same shape.  
• Two independent samples are drawn from the two distributions.  
• If the distributions are symmetric, you should have at least n>15 in each group. If the 
distributions are not symmetric, you should have at least n>30 in each group. 
Interval estimation  
A (1-α)*100% confidence interval for the difference in the population means (μX-μY) is  

 

 x̄-ȳ±t1-α/2,df  
s2

x

m+ 
s2

y

n  

Equation 8 
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Most software packages use a Satterthwaite approximation to determine the degrees of freedom, 
df, leads to a conservative analysis.  Degrees of freedom simple point to the correct table to us.  
Here, we can also use df=minimum (n – 1, m-1) as an approximation. 
Hypothesis testing 
The unpooled t-statistic is  
 

 t*= 
x̄-ȳ

  
s2

x

m+ 
s2

y

n

 

Equation 9 
With hypotheses shown in Table 7. 
 
Table 7 Decision rules for the two independent sample t-test with unpooled variance 
Hypotheses Decision Rule p-value 
H0:μx=μy vs H1:μx≠μy Reject H0 if |t

*|>t1-α/2,df  2*P(tdf>|t*|)  
H0:μx≥μy vs H1:μx<μy Reject H0 if t

*<-t1-α,df  P(tdf<t*)  
H0:μx≤μy vs H1:μx>μy Reject H0 if t

*>t1-α,df  P(tdf>t*)  
 
Where df is as described above. Sometimes the difference in the two population means is called 
the shift and is denoted by Δ=μX-μY. 
Example  
Suppose we are interested in comparing the cholesterol levels of two groups of quail, one group 
who receives a treatment designed to lower cholesterol and one which has not. A random sample 
of n=30 quail were selected for control, and a sample of m=20 quail were selected for treatment. 
The data are presented below with comparison boxplots shown in (Fig. 4). These indicate that the 
assumption of a common variance is not valid so we will perform an unpooled analysis.  
control 
 44 51 50 52 41 69 56 67 45 37 40 44 46 55 50 60 65 53 46 38 58 
58 48 29 65 62 59 45 61 56 
treated 
 50 49 46 58 50 59 58 48 44 41 49 47 49 48 45 48 49 51 52 52 
A 95% confidence interval for the mean difference in the two populations μx-μy (control - 
treatment) is (-2.14 mg/dL, 6.18 mg/dL). To test the hypothesis that the treatment is effective in 
lowering cholesterol we test  
 H0:μx≤μy vs H1:μx>μy 
The t-test statistic is t*=0.977, which is not significant (p-value=0.1670). So, based on these data 
we do not have significant evidence to conclude that the treatment is effective in lower 
cholesterol. 
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Pooled inference 
Assumptions  
• The response variable is numeric.  
• The two distributions have the same shape and variance.  
• Two independent samples are drawn from the two distributions.  
• If the distributions are symmetric, you should have at least n>15 in each group. If the 
distributions are not symmetric, you should have at least n>30 in each group. 
Interval estimation  
An interval estimate for the difference in the population means (μx-μy) is  

 

 x̄-ȳ±t1-α/2,m+n-2sp  
1
m+ 

1
n  

Equation 10 
where  
 

 sp=  
(m-1)s2

x+(n-1)s2
y

m+n-2  

Equation 11 
is a pooled estimate of the population standard deviation (σ) of the two groups. 
Hypothesis testing  
The pooled t-statistic is  

 t*= 
x̄-ȳ

sp  
1
m+ 

1
n

 

Equation 12 
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where sp is as described above for the interval estimate. 
Hypotheses are shown in Table 8 
 
Table 8 Decision rules for the two independent sample t-test with pooled variance 
Hypotheses Decision Rule p-value 
H0:μx=μy vs H1:μx≠μy Reject H0 if |t

*|>t1-α/2,m+n-2  2*P(tm+n-2>|t*|)  
H0:μy≥μz vs H1:μy<μz Reject H0 if t

*<-t1-α,m+n-2  P(tm+n-2<t*)  
H0:μy≤μz vs H1:μy>μz Reject H0 if t

*>t1-α,m+n-2  P(tm+n-2>t*)  
 
Example 
We wish to test the hypothesis that men are taller than women. Suppose that the heights, in 
inches, of a sample of m=20 women are  
68 60 61 60 60 59 63 59 63 65 70 61 67 66 61 65 68 63 64 67 
Suppose that the heights, in inches, of a sample of n=22 men are  
68 65 66 68 72 70 73 72 71 70 69 71 66 72 69 73 70 72 65 69 70 72 
Let μx denote the true mean height for women and μy denote the true mean height for men. The 
comparison boxplots (Fig. 4) for these data indicate that the assumption of equal variances is 
appropriate. The hypotheses are  
 
 H0:μx≥μy vs H1:μx<μy. 

Equation 13 
From software we obtain the t-test statistic, t*=-6.8054, since the value observed is so extreme we 
may say that the p-value is approximately zero and conclude that indeed men are taller than 
women. The confidence interval for μx-μy reported by the software is (-8.02 inches, -4.35 inches). 
This says that, on average, women are between about 4 and a half and 8 inches shorter than men 
with 95% confidence. 

Nonparametric 
Though the Mann-Whitney-Wilcoxon (MWW) test is general in that it tests if one population is 
larger than another, it is often used to test for differences in the medians of the two populations in 
which case the populations are assumed to have the same shape. For example, one might want to 
know which bacterial strain, X or Y has a longer lifespan. The distributions of the two random 
variables might be quite different in shape, etc. A rejected null hypothesis says that Y tends to 
outlive X. We will discuss only the inference on medians. 

Inference 

Assumptions  
• The two samples are independent.  
• The response variable is numeric.  
• The two population differ possibly only in location.  
• The sample sizes are sufficiently large: m≥10 and n≥10. 
Test of hypothesis  
The MWW test statistic is  
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 T= ∑
i=1

n
 R(xi)  

Equation 14 
where R(xi)  denotes the rank of xi among the combined sample x1,...,xn,y1,...,ym . The large 
sample standardized test statistic is  
 

 z*= 
T-m(n+m+1)/2

 nm(n+m+1)/12
 

Equation 15 
Hypotheses are shown in Table 9 
 
Table 9 Decision rules for the Mann-Whitney-Wilcoxon test 
Hypotheses Decision Rule p-value 
H0:θx=θy vs H1:θx≠θy Reject H0 if |z

*|>z1-α/2 2*P(Z>|z*|)  
H0:θx≥θy vs H1:θx<θy Reject H0 if z

*<-z1-α P(Z<z*)  
H0:θx≤θy vs H1:θx>θy Reject H0 if z

*>z1-α P(Z>z*)  
 
Interval estimation  
Similar to the one sample location problem, an interval estimate based on the MWW test is the 
set of values for which the null hypothesis is not rejected. 
Example 
Using the height data from pooled inference example (page 13), comparison boxplots (Fig. 5) 
show that the assumption of a shift model is appropriate. The appropriate hypotheses to answer if 
men have a median height which is greater than the median height of all women are  
 
 H0:θx≥θy vs H1:θx<θy. 

Equation 16 
The value of the rank sum statistic, adjusted for ties, is T=244 and the standardized version is 
z*=-4.684. Since the p-value = 1.406 is small (less than α=0.05) the null hypothesis is rejected. 
There is significant evidence that men are taller then women. 
A 95% confidence interval for the shift θx-θy is (-9 inches, -4 inches). 

THE ONE SAMPLE PROPORTION PROBLEM 
The one sample proportion problem is concerned with inference on one population proportion or 
the probability of success of some process. For example, we might be interested in the success 
rate of a new treatment for some disease. 
Data 

Let x be the number of successes out of n. Then p$= 
x
n is a point estimate of p. 

Assumptions  
• The observations are independent.  
• The sample size n is large enough so that n*p0>5 and n(1-p0)>5  for testing.  
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• The sample size n is large enough so that n*p$>5 and n(1-p$)>5 for interval estimation.  
Interval estimation  
A (1-α)*100% confidence interval for p, the population proportion, is  

 p$±z1-α/2  
p$(1-p$)

n . 

Equation 17 
Hypothesis testing 
The test statistic is 

 z*= 
p$-p0

  
p0(1-p0)

n

 

Equation 18 
Hypotheses are shown in Table 10 
 
Table 10 Decision rules for the one sample test of a proportion 
Hypotheses Decision Rule p-value 
H0:p=p0 vs H1:p≠p0 Reject H0 if |z

*|>z1-α/2 2*P(Z>|z*|)  
H0:p≥p0 vs H1:p<p0 Reject H0 if z

*<-z1-α P(Z<z*)  
H0:p≤p0 vs H1:p>p0 Reject H0 if z

*>z1-α P(Z>z*)  
 
Example 
It is well known that the cure rate for the standard treatment of a certain disease is 0.45. A new 
treatment has been developed and we wish to test if the new treatment has a higher cure rate. The 
hypotheses of interest are  
 H0:p≤0.45 vs H1:p>0.45. 

Equation 19 

Out of a sample of n=99 patients with the disease, x=46 of them were cured so that p$= 
46
99=0.4646 

is a point estimate of the true cure rate. An 95% confidence interval estimate is 
0.4646±1.96 0.4646*0.5354/99=0.4646±0.0982 or (0.3665,0.5629). That is the true cure rate 
for the new drug is between about 37% and 56% with 95% confidence. The test statistic is  
 

 z*= 
0.4646-0.45

  
0.4646*0.5354

99

=0.2913. 

Equation 20 
The p-value of the test is p-value=0.3854, which indicates that there is not significant evidence to 
say that the new disease is significantly better at curing the disease than the current standard 
treatment. 
The researcher may choose to do only an interval estimate or a hypothesis or both.  The 
determination should be made based on the research question of interest.  If interest is in getting 
an estimate of the rate, an interval estimate should be created.  If interest is in testing a particular 
plausible value, a hypothesis test should be done.  If the problem is new to the literature, both 
methods might be applied. 
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THE TWO INDEPENDENT SAMPLES PROPORTION 
PROBLEM 
The two sample proportion problem is concerned with inference on the difference between two 
population proportions or the difference in the success rates of two treatments. For example if 
treatment 1 has success rate p1 and treatment 2 has success rate p2 (both unknown, both needing 
to be estimated from the data), we may want to test if treatment 2 has a higher success rate than 
treatment 1. We will provide information on the degree of difference of success rate. 
Data  
Let x1 be the number of successes out of n1 for treatment 1. Let x2 be the number of successes out 

of n2 for treatment 2. Then p$1= 
x1

n1
 and p$2= 

x2

n2
 are the sample proportions. 

Assumptions  
• The two samples are independent.  

• The sample sizes n1 and n2 are large enough so that ni*p$ i>5 and ni(1-p$ i)>5. 

Interval estimation 
An interval estimate for the difference in the two populations proportions (p1-p2) is  

 

 p$1-p
$

2±z1-α/2  
p$1(1-p$1)

n1
+ 

p$2(1-p$2)
n2

. 

Equation 21 
Hypothesis testing 
The test statistic is  
 

 z*= 
p$1-p

$
2

 p$(1-p$) 
⎝
⎜
⎛

⎠
⎟
⎞ 

1
n1

+ 
1
n2

 

Equation 22 
where  

p$= 
x1+x2

n1+n2
. 

Equation 23 
Hypotheses are shown in Table 11. 
 
Table 11 Decision rules for the two independent sample test of proportions 
Hypotheses Decision Rule p-value 
H0:p1=p2 vs H1:p1≠p2 Reject H0 if |z

*|>z1-α/2 2*P(Z>|z*|)  
H0:p1≥p2 vs H1:p1<p2 Reject H0 if z

*<-z1-α P(Z<z*)  
H0:p1≤p2 vs H1:p1>p2 Reject H0 if z

*>z1-α P(Z>z*)  
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Examples 
Suppose we are interested in knowing if more patients respond to a new treatment (treatment 1) 
than a standard treatment (treatment 2). That is, we are interested in comparing the response rates 
of the two treatments, p1 and p2. In a sample of n1=100 subjects on treatment 1 there were x1=33 
responders. In a sample of n2=110 subjects on treatment 2 there were x1=20 responders. The 

point estimates for the response rates are p$1= 
33
100=0.330 and p$2= 

20
110=0.182. A 95% confidence 

interval is  

 0.330-0.182±1.96  
0.330*0.670

100 + 
0.182*0.818

110  

Equation 24 
or (0.031.0.265). With 95% confidence, treatment 1 has a response rate with is between 3% and 
26.5%, higher than the response rate of treatment 2. 
Since we are interested in knowing if treatment 1 has a higher response rate than treatment 2 we 
perform a lower tail test (that is, we test whether treatment 1 has a higher response rate than 
treatment 2, instead of simply testing that the response rates are different): 
 
 H0:p1≤p2 vs H1:p1>p2 

Equation 25 
The test statistic we observe is  
 

 z*= 
0.330-0.182

 0.252*0.748 ⎝⎜
⎛

⎠⎟
⎞ 

1
100+ 

1
110

=2.477 

Equation 26 
since  

p$= 
33+20

100+110=0.252. 

Equation 27 
Since z*=2.477>1.645=z0.95 we would reject the null hypothesis and conclude that treatment 2 is 
probably doing better. Also p-value=0.0066<0.05=α. 

ANOVA 
Analysis of Variance (ANOVA) is used for testing for a difference in the means of three or more 
groups. For example, one might want to know if the mean blood pressure is the same or different 
across several ethnic groups. One could also use ANOVA to test for differences in blood pressure 
for three different treatment groups. The main assumption is that the variability across the groups 
is the same. If this assumptions is not met, then pairwise t-tests are appropriate, though a 
correction for multiple comparisons should be made (see below). For a thorough treatment of 
ANOVA and related topics, see Kutner, et. al. (2005). 

Inference 
Assumptions  
• The response variable is numeric.  
• The explanatory variable is categorical.  



 21

• Variability across groups is the same (σ1=...=σk=σ).  

• If the distribution is symmetric, you should have at least n>15 in each group. If the distribution 
is not symmetric, you should have at least n>30 in each group. 
Hypothesis testing 

H0:μ1=μ2=...=μk 
Equation 28 

 H1:μi≠μjfor some i≠j 
The test statistic for this Analysis of Variance test of means is beyond the scope of this appendix. 
Computer software will provide you with a test statistic and a p-value. Reject H0 if the p-value is 
less than the specified level of significance (usually α=0.05 or 0.01.) 
Confidence intervals 
If, after running the hypothesis test, you want to find a confidence interval for a difference in 
means, refer to the section on Two Sample Location Problem, Parametric, Pooled Inference. 
However, instead of using the pooled estimate of variance (s2

p), use the mean squared error, MSE, 
from the ANOVA output. Additionally, the degrees of freedom for the t-multiplier will be the 
degrees of freedom in the residual (or error) row from the ANOVA table. 
Example 
Suppose we want to compare the average life of three strains of yeast. The first strain (C) is a 
control strain; the second strain (D) has a transcription factor gene deleted; and the third strain 
(A) has an extra copy of the same gene added. We want to know whether modifying the 
transcription factor gene changes the average lifespan (in generations) of the strain of yeast. We 
collect 80 data points, summary statistics are shown in Table 12. 
 
Table 12 Average Life Span of Three Strains of Yeast 
 Control Deletion Addition 
sample size 30 27 23 
Average lifespan 15.89 13.85 16.98 
st. dev. 2.84 2.85 2.65 
 
As seen in the data table as well as the boxplots (Fig. 6), the data are consistent with the 
assumptions (numeric, symmetric, constant variance.) 
[*Figure 6 near here] 
Using statistical software, the ANOVA table shown in Table 13 is obtained 
 
Table 13 ANOVA Table Obtained from Yeast Life Span Data 
 df Sum Sq Mean Sq F test stat p-value
Groups 2 128.7 64.35 8.259 0.0005631
Residual 77 599.95 7.79

The ANOVA table gives a small p-value which leads to rejection of the null hypothesis that the 
average lifespans are the same across all three groups. However, it is not clear which of the 3 
groups are different. Confidence intervals for each of the pairwise differences of population 
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means are calculated using the formula from shown in Equation 29. An interval estimate for the 
difference in two population means (μ1-μ2) is  

x̄1-x̄2±t
α*/2,df MSE 1/n1+1/n2  

Equation 29 

Here, MSE = 7.79 and df=77. Confidence intervals for the three groups at the α*=0.05/3=0.017 
level (98.3% confidence) are created; see the multiple comparisons section below. The multiplier 
is t.0083,77=2.45 . 

Table 14 Estimates of pairwise differences of mean lifespan for different strains of yeast 
Parameter Estimate confidence interval 
μC-μD 2.045 (0.233 generations, 3.857 

generations) 
μC-μA -1.087 (-2.980 generations, 0.806 

generations) 
μA-μD 3.132 (1.194 generations, 5.070 

generations) 

Because neither of the confidence intervals for the deleted strain overlap zero, the average 
lifespan for the deleted strain is significantly different from either the wildtype or the addition 
strain with a family-wise confidence rate of 95%. However the wildtype is not significantly 
different from the addition strain. 

Multiple Comparisons 
When computing one level α hypothesis test (in any setting, not just ANOVA), the probability of 
rejecting H0 when H0 is really true is set at α. Similarly, when finding a confidence interval, the 
probability of missing the true parameter is also α (or one minus the level of confidence.) Notice 
that in 100 hypothesis tests where nothing interesting is going on (no alternative hypothesis is 
true), on average five true null hypotheses will be rejected when using α=0.05. Similarly, out of 
100 95% confidence intervals, on average five of them will not overlap the true parameter of 
interest. This problem of multiple comparisons happens in any situation where there is more than 
one hypothesis test or confidence interval. 
When finding confidence intervals for differences of means after running an ANOVA test, 
multiple comparisons should be considered. If we have 3 experimental treatment, we might want 
to find 3 confidence intervals for differences of means: 1 vs. 2, 1 vs. 3, and 2 vs. 3.  There are 
many ways to adjust for multiple comparisons; the Bonferroni correction is discussed here. Note 
that the Bonferroni adjustment is quite conservative. 
Instead of controlling the type I error rate (rejecting a true null hypothesis) for each test, the 
Bonferroni adjustment controls the familywise error rate. The familywise error rate is the 
probability of rejecting one or more true hypotheses when doing numerous hypothesis tests. (For 
confidence intervals, a familywise error rate would be the probability of at least one confidence 
interval failing to capture the true parameter of interest.)  
When running k hypothesis tests, the level of significance should be adjusted to α* = α/k. Then, 
α* is used as the significance level for each individual test, and α is the conservative familywise 
error rate. For example, if 12 hypothesis tests are to be performed, and a familywise error rate of 
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no more than 0.05 is desired, each test should be performed at level α=0.05/12=0.00417. That is, 
for each of the k hypothesis tests, reject the null hypothesis the p-value is less than 0.05/12 = 
0.00417. In order to control the familywise error rate for the 12 confidence intervals, create 
99.583% confidence intervals. 

Nonparametric 
An extension of the Mann-Whitney-Wilcoxon test (p. 14) is the Kruskal-Wallis test. Kruskal-
Wallis is a test for medians.  
Assumptions 
• The k samples are independent.  
• The response variable is numeric.  
• The k populations differ only in location.  
 H0:θ1=θ2=...=θk vs HA:θi≠θj for some i≠j 

Equation 30 
Example 
Continuing the yeast example (p.18) and using software to obtain the p-value = 0.0011. As with 
the parametric approach, the null hypothesis is rejected. 

REGRESSION 
Regression analysis is a statistical technique designed to fit a straight line through a cloud of 
points. Let the response variable be called y and the explanatory variable be called x, then the 
regression analysis will find bo (the y-intercept) and b1 (the slope) such that  

y=bo+b1x 
Equation 31 

is the best fit line between x and y. For data, we have a random sample of n pairs of observations: 
(x1,y1),(x2,y2),...,(xn,yn) . For a thorough treatment of regression analysis, see Kutner, et. 
al. (2005). 

Inference 
Assumptions 
• Y must be a continuous and numerical variable.  
• X must be a numerical variable. 
• Y should be normally distributed around the regression line. 
• The variability around the regression line should be relatively constant for all values of X. 
• The Y values should all be independent observations. 
• A sample of n>25 pairs of observations is needed. 
In most situations, the hypotheses of interest are whether or not Y changes linearly with X (i.e., 
whether X and Y are correlated.) If the slope of the regression line is close to zero, we say that an 
increase in X is not statistically associated with any linear change in Y, or X and Y are not 
significantly correlated.  
Let β1 be the slope of the regression on the population of Xs and Ys. 

Interval estimation 
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A (1-α)*100% confidence interval for β1 is  

 
b1±t(1-α/2,n-2)s(b1)  

Equation 32 
where b1 and s(b1)  are computed using statistical software (formulae can also be found in the 
introductory statistics texts listed above.) 
Hypothesis testing 
One-sided and two-sided tests concerning the populations slope, β1, are constructing based on the 
test statistic  

t*= 
b1

s(b1)
 

Equation 33 
Table 15 contains the decision rules for the three possible cases, with the probability of making a 
type I error controlled at α. 
 
Table 15 Decision rules for tests of the slope for linear regression 
Hypotheses Decision Rule p-value 
H0:β1=0 vs H1:β1≠0 Reject H0 if |t*|>t1-α/2,n-2  2P(tn-2>|t*|)  
H0:β1≥0 vs H1:β1<0 Reject H0 if t*<-t1-α,n-2  P(tn-2<t*)  
H0:β1≤0 vs H1:β1>0 Reject H0 if t*>t1-α,n-2  P(tn-2>t*)  

 
Example 
Consider a situation investigating the linear relationship between lizard speed and outside 
temperature. In particular, interest is in determining whether a change in lizard speed at 20°C (the 
explanatory variable, X) is linearly associated with lizard speed at 35°C (the response variable, 
Y). Forty seven data points are collected (Fig. 7), the first 12 points (in m/s) are shown in Table 
16. 
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Table 16 First Twelve Data Points Collected Correlating Lizard Speed and Outside Temperature 
Lizard # 1 2 3 4 5 6 7 8 9 10 11 12 
Speed at 
20° C 

0.96 1.05 1.18 1.32 1.37 1.59 1.39 1.23 1.74 1.13 1.06 1.30 

Speed at 
35° C 

1.85 1.31 1.73 1.42 2.18 1.79 1.85 1.92 2.33 1.78 1.48 2.03 

 
 
Analysis 
Checking assumptions: the points are reasonably spread out around a line with constant variance 
across the explanatory variable. The relevant test is:  

H0:β1≤0    no linear relationship or negative linear relationship 
Equation 34 

  H1:β > 0   positive linear relationship 
Equation 35 

From the software, b1 = 0.723 and s(b1) = 0.109  which give t* = 6.660. The critical value is 
t1-α,n-2=t.95,45=1.68 , so the null hypothesis is rejected, there is significant evidence to conclude 

a positive linear relationship between speed at 20°C and 35°C. Additionally, the associated p-
value is 0.0000033 which says that if the two speeds were not linearly associated, we would only 
see data like we got 0.00033% of the time, which is very unusual. The p-value is smaller than 
0.05, again, confirming our decision to reject H0. Figure 8 shows the resulting regression line. 
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The appropriate 95% CI for β1 is:  

b1±t0.975,10*s(b1)  
Equation 36 

   0.723 ± 2.01*0.109 
     (0.504 m/s ,0.942 m/s) 
We are 95% confident that for every increase in 1 m/s in speed at 20°C the speed at 35°C 
increases by between 0.504 m/s and 0.942 m/s. 
Note that regression analysis should only be done for x-axis values that are within the constraints 
of the data.  It would not make sense to predict the running speed of a lizard who runs 10m/s or 
0m/s as neither of those explanatory values are realistic.  Similarly, it is not wise to predict values 
outside the x-data because one is never certain that the same linear model holds for all possible 
speeds. 

CORRELATION (r) 
Related to linear regression are ideas of correlation. Correlation (typically denoted by “r”) 
measures the degree of linear association between two continuous variables. If two variables 
have a perfect positive linear relationship (e.g., miles and kilometers), they have a correlation of 
one (1). If two variables have a perfect negative linear relationship (e.g., number right and 
number wrong on an exam), they have a correlation of negative one (-1). If two variables are not 
correlated (e.g., age and beak length for adult chickens), they have a correlation of zero (0). 

Inference 
Although formulae exist for calculating the correlation between two continuous variables, we 
will use statistical software for calculations. The value of r gives an idea of how far the data 



 27

points fall from a line.  As mentioned above, the sign of r (either positive or negative) gives an 
indication of the relationship (either positive or negative) between the two variables.  However, r2 
is often reported and interpreted as the proportion of variability explained by the regression 
model.  Interest is usually in testing whether the population correlation (ρ) is significantly 
different from zero. 
Hypothesis testing  
The test for correlation at zero is the same test for the population slope at zero. Therefore, the 
summary of the correlation test is shown in Table 17. 
Table 17 Decision rules for tests of the population correlation 
Hypotheses Decision Rule p-value 
H0:ρ=0 vs H1:ρ≠0 Reject H0 if |t*|>t1-α/2,n-2  2P(tn-2>|t*|)  
H0:ρ≥0 vs H1:ρ<0 Reject H0 if t*<-t1-α,n-2  P(tn-2<t*)  
H0:ρ≤0 vs H1:ρ>0 Reject H0 if t*>t1-α,n-2  P(tn-2>t*)  

An estimate of the population correlation using the sample correlation, r is obtained using 
statistical software. 
Example 
Continuing with the lizard example (p.21)above, correlation is tested using b1 the estimated 
slope. Note that because it was concluded that the population slope was significantly larger than 
zero we may conclude that the correlation between running speed at 20°C and 35°C is 
significantly positive. The estimated value is r=0.704.  Note that here r2 = 0.496 which says that 
49.6% of the variability in the running speeds at 35°C can be explained by the information given 
by the running speeds at 20°C. 
 
Correlation does not imply causation 
It is important to remember that when measuring the correlation between two variables, a 
significant correlation does not mean that one variable causes the other variable to increase or 
decrease. As an example, notice that ice-cream sales and boating accidents tend to be strongly 
positively correlated. However, no one would believe that eating ice-cream causes boating 
accidents. Both increase when the weather is warm. Be very careful with your conclusions when 
reporting correlations. 

CHI SQUARE (χ2) 
Chi Square analysis is a technique used to compare two categorical variables. Usually, the 
question of interest is whether or not the two variables are independent.  That is, does 
information about one variable provide information about the second variable (and indicate a 
dependent relationship.)  The variables can be binary or have multiple levels.  
Assumptions 
• Independent random samples from two or more populations, with each subject classified 
according to one categorical variable (the other categorical variable represents the population 
from which the subject came.) 
 or 
• A single simple random sample where each subject is classified into each of two categorical 
variables. 
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 additionally 
• All expected cell counts must be at least 1, and no more than 20% of the counts can be less than 
5. 
The data will be organized in a table such as that shown in Table 18 (here we have M rows and N 
columns). 
Table 18 Example of the structure for a data set which has N categories for the first variables and 
M categories for the second variable 

 Variable 1 
Variable 2 Group 1 Group 2    ⋅⋅⋅    Group N 
Group A     
Group B     

⋅⋅⋅     
Group M     

Inference 
In general, the null hypothesis (H0) is that there is no relationship between the two categorical 
variables. When the null hypothesis is true, the expected data values are easily calculated. That is, 
to investigate whether smoking and gender are related, start by figuring out what proportion of 
smokers are female (and male) if the two variables are not related. That is, we’d expect about half 
of the smokers to be male and half to be female if, in fact, the two variables were not related. 
Expected counts 
The expected count represents the number of subjects expected in each cell if in fact the null 
hypothesis is true (that is, if there is no relationship between the two variables.)  
 

expected count= 
row total x column total

table total  

Equation 37 
Hypothesis testing 
With the Chi Square test, there is not an obvious population parameter that is being estimated 
(unlike the one sample t-test of μ where inference is about the population mean.) Here, the χ2 test 
statistic combines the expected and observed counts. The test statistic will allow us to make 
conclusions about the null and alternative hypotheses:  
 

χ2*= ∑   
Equation 38 

(observed count - expected count)^2 / expected count  

Only Two Categories per Variable 
A chi square statistic is distributed according to the chi square distribution. There are chi square 
tables in the backs the introductory reference books, or use statistical software. The chi square 
table is sorted by degrees of freedom. For the chi square test of independence, the degrees of 
freedom are based on the number of rows and columns you have in the data table:  

degrees of freedom = df=(number of rows-1)(number of columns-1) 
Equation 39 
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Note that the Chi Square Test is always one-sided in the sense of rejecting the null hypothesis 
and calculating a p-value. Notice that if the null hypothesis is not true the expected counts will be 
much different from the observed counts. It does not matter in which direction the null 
hypothesis is wrong, any direction will produce a large test statistic. Therefore, always reject the 
null hypothesis when the test statistic is big.  The decision rule for a chi square test are given in 
table 19. 
Table 19 Decision rules for a Chi-square test 

Hypotheses Decision Rule p-value 
H0: there is no relationship 
between the two categorical 

variables 

Reject H0 if χ
2*>χ2

1-α,df  P(χ2
df>χ2*)  

Example 
Suppose interest is in determining whether or not there is a relationship between type of bird egg 
and ability of the egg to withstand an overnight freeze. Data on 100 eggs are collected and 
tabulated as shown in Table 20. 
Table 20 Relationship Between Type of Bird Egg and Ability to Withstand Overnight Freezing 

 Egg Status 
Egg Type Okay Cracked Broken 

Robin 9 8 4 
Wren 11 12 7 
Sparrow 5 10 9 
Cuckoo 9 11 5 
Table 21 shows the expected values computed assuming the null hypothesis of no relationship 
across variables is true. Note that the expected values do not seem particularly different from the 
observed values.  
Table 21 Expected number of eggs in each category assuming no relationship between the two 
variables (i.e. assuming H0 is true) 

 Egg Status 
Egg Type Okay Cracked Broken 

Robin 7.14 8.61 5.25 
Wren 10.20 12.30 7.50 
Sparrow 8.16 9.84 6.00 
Cuckoo 8.50 10.25 6.25 
The associated test statistic is χ2*=3.99 with a p-value = 0.678. The p-value is large and says that 
if the null hypothesis is true, we would see data at least as extreme as ours about 67.8% of the 
time. The large p-value leads to failure to reject the null hypothesis. There is not significant 
evidence that egg type and egg status are related.  
A special case occurs when there are only two levels (or categories) for one of the variables. For 
example, suppose a cracked egg is considered to be broken (that is, we’ve collapsed the cracked 
and broken data into one column.)  . The data then become that shown in Table 21. 
Table 22 Relationship between type of bird egg and ability to withstand overnight freezing with 
cracked and broken collapsed 

 Egg Status 
Egg Type Okay Broken 

Robin 9 12 
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Wren 11 19 
Sparrow 5 19 
Cuckoo 9 16 

The resulting test statistic is χ2*=2.73 with a p-value = 0.4355. The null hypothesis of no 
relationship is still unable to be rejected. However, the hypotheses this test are stated and 
interpreted slightly differently (though the computations are the same as when there are more 
than two rows or columns.) Note that the hypotheses here can be stated as:  
 

H0:pR=pW=pS=pC 
Equation 40 

  H1:at least one of the proportions is different 
    
Where pR is the true proportion of Robin eggs; pW is the true proportion of Wren eggs; pS is the 
true proportion of Sparrow eggs; and pC is the true proportion of Cuckoo eggs broken after an 
overnight freeze. The Chi Square Test of independence is actually testing whether or not the true 
proportion of broken eggs is the same across the four types of eggs. 
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Figure 1 Boxplot of birth weight of 47 children 
Figure 2 Boxplot of differences (cross - self) 
Figure 3 Comparison boxplots 
Figure 4 Comparison boxplots of cholesterol levels of untreated and treated quail 
Figure 5 Comparison boxplots of heights of women and men 
Figure 6 Boxplot of the age in generations for three different strains of yeast. 
Figure 7 Scatterplot of lizard speed on a racetrack at two different temperatures.  Each point on 

the graph represents a particular lizard. 
Figure 8 Scatterplot of lizard speed on a racetrack at two different temperatures.  Each point on 

the graph represents a particular lizard.   The line represents the regression line or least 
squares fit 


