The Fluorescent Protein family

Fluorescent proteins of the GFP family consist of ~220–240 amino acid residues (26 kDa) which fold into a barrel formed by 11 β -sheets that accommodates an internal distorted α -helix containing the covalently-bonded chromophore 4-(*p*-hydroxybenzylidene)imidazolidin-5-one (HBI) running through the centre. The <u>chromophore</u> is located within the stable β -barrel and therefore is <u>well protected</u> from denaturation or proteolysis. The beta barrel structure is a nearly perfect cylinder, 42 Å long and 24 Å in diameter, otherwise known as a " β -can" formation, which is unique to the GFP-like family.

Importantly, all GFP-like proteins have a more or less pronounced tendency to oligomerize. Even *Aequorea victoria* GFP, which is considered monomeric, forms dimers at high concentrations corresponding to physiological conditions in jellyfish. Notably, nearly all FPs from non-bioluminescent Anthozoa and other taxa form very stable homotetramers even at very low (nanomolar) concentrations. However, as a reporter for the labelling of most proteins, an FP *must* be monomeric. Otherwise, <u>oligomerization</u> of a chimeric construct would interfere with normal protein function and localization. For example, DsRed, an obligate tetramer, if attached to actin, would bring together four actin subunits creating a messy tangle inside the cell.

The emission of GFP-like chromophores cannot be red-shifted beyond 540 nm (yellow). The breakthrough in the red fluorescent field occurred only after the discovery of DsRed and other Kaede-like red fluorescent and chromo proteins in Anthozoa species. The evolutionary biologist Yulii Labas prompted Mikhail Matz to clone GFP-like homologues from the brightly colored tentacle tips of *Discosoma* sp. mushroom anemone and other Anthozoa. The story of this discovery stemming from the stock of a professional Moscow aquarium keeper is recounted <u>here</u>.

These discoveries opened the way for the development of orange, red, and far-red FPs with emission peaks located as far as 655 nm. Fluorescent proteins are currently known to exist in four phyla of multicellular animals: Cnidaria, Ctenophora, Arthropoda, and Chordata. Within Cnidaria, class Anthozoa contains the greatest diversity of FP colors. Those proteins with a peak emitting in the middle of the spectrum ~500–530 nm (green and yellow FPs) are brightest, decreasing towards the limit at each end of the visible spectrum (blue and far-red FPs).

Fluorescent proteins of lower brightness but higher photostability result better signal-to-noise ratios, particularly for especially for time-lapse experiments. Although important for fixed material, brightness should not be the only parameter considered while choosing an FP for a particular application. Most FPs in use have a maturation half-time from ~40 min to 1-2 h, which is sufficient to quantitatively label cells, organelles and proteins. However, for some applications, such as early detection of promoter activation, labeling proteins with a short lifetime or monitoring single translational events, FPs with very fast maturation are required. The high extinction coefficients of red FPs make them excellent FRET acceptors for yellow donors. Yellow/red FRET pairs may soon challenge traditional cyan/yellow pairs. Points to keep in mind when choosing a fluorescent protein.

Key choices for fluorescent proteins

1.	mTagBFP2	(399/454)	Brightest blue FP
2.	mCerulean 3	(433/475)	Very photostable & bright
3.	mTFP1	(462/492)	Brightest cyan FP
4.	m eGFP	(490/508)	Gold standard FP – can dimerize
5.	mNeon Green	(506/518)	Brightest green FP
6.	mVenus	(515/528)	
7.	wd yPET	(517/530)	Brightest yellow FP, FRET
8.	mKO2	(551/565)	
9.	tdTomato	(554/581)	Brightest red FP, photostable
10.	mTagRFP	(555/584)	
11.	mFusion red	(580/608)	Very photostable, low toxicity
12.	mCherry	(587/610)	Photostable
13.	mKate2	(588/633)	Brightest far-red FP

λ (nm)		FP	Ex (nm)	Em (nm)	Brightness
450 —	0	mTagBFP	399	456	33
	0	- mCerulean	3 433	475	35
495 —		< EGFP	488	507	34
	0	- Emerald	487	509	39
	õ	Sf GFP	485	510	54
		Venus	515	528	53
		mCitrine	516	529	59
570 —					
590 —	8	- dTomato	554	581	48
	ŏ	- mApple	568	592	37
620 —	0	mCherry	587	610	16
	0	mKate2	588	633	25
		mNeptune	600	650	13