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Preface

‘To them, I said, the truth would
be literally nothing but the
shadows of the images.’

The Republic, Plato

In Plato’s Republic, Socrates proposes a scene in which prisoners are chained
up in an underground cavern so they cannot even move their heads1. The view of
the prisoners is confined to the shadows cast upon the wall in front of them: their
own shadows, and also those of people passing by behind them. If all they could
ever see were the shadows, Socrates asks, then wouldn’t the shadows seem like the
truth to them? Wouldn’t they interpret sounds and voices as if they are coming
from the shadows themselves, rather than anyone or anything behind them, and
think that they understand – failing to realize that they are only seeing reflections
of reality, and not reality itself?

The purpose of bringing this up here is not so much to introduce a profound
examination how our limited minds may overestimate their grasp of reality based
upon what our senses can tell us, but rather to draw attention to a rather more
simple and specific point: when it comes to analyzing fluorescence microscopy
images in biology, it is essential to remember that we are not directly seeing
the phenomena we normally want to measure. At best, we can record images
containing information that relates in some way to the reality of what we wish to
study – but which is nevertheless quite far removed from that reality.

Computers are excellent for making measurements. Armed with some relevant
software, it is possible to make masses of measurements quickly – all to an
intimidating number of decimal (or rather binary) places, giving an impressive
semblance of precision. But to ensure that the measurements made are at all
meaningful, and that they are properly interpreted, requires that we know the
limitations of what the images can tell us. Otherwise we risk very accurately
quantifying phenomena like point spread functions and noise, and reporting these
as if they might have biological significance.

1The dialogue can be read at http://en.wikisource.org/wiki/The_Republic/Book_VII.
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vi PREFACE

Figure 1: Plato’s cave.

The overall purpose of this book is to provide a path for busy biologists
into understanding fluorescence images and how to analyze them, using the free,
open-source software ImageJ (specifically the Fiji distribution) to explore the
concepts. It divides into three parts:

1. Introduction to images, ImageJ & Fiji – The basic concepts of digital images
in microscopy. While essential to know, if the idea of trying to quantitatively
analyze an 8-bit RGB colour JPEG compressed AVI file already fills you
with horror, you may be able to save time by skipping much of this.

2. Processing fundamentals – A tour of the most important and general
techniques that can be used to help extract information from many types of
image. After this, you should be happy with Gaussian filters, thresholding,
spot detection and object analysis, with some macro-writing skills.

3. Fluorescence images – More detail about fluorescence image formation. This
is necessary not only to properly interpret any measurements, but also when
figuring how to ensure data is recorded well in the first place.

No background in image analysis or computer programming is assumed, nor is
the maths here very deep. Specifically, if you are at ease with arithmetic, means,
medians2, standard deviations and the occasional square root, this is enough.

2Just in case: the mean is the familiar average, i.e. add up all the values, and divide by the
number of values you have. The median is what you get if you sort a list of values, and then
choose the one in the middle.
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There are a large number of questions and practicals strewn throughout the
pages. These are not supposed to steal your time (although a few could be quite
tricky), but rather to make the ideas more memorable and the reading feel more
worthwhile. In most cases, my suggested solutions are provided at the end of each
chapter. You may well find alternative or better solutions.





Part I

Introducing images,
ImageJ & Fiji

1
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Images & pixels

Chapter outline

• Digital images are composed of pixels

• Each pixel has a numeric value, often related to detected light

• The same pixel values can be displayed in di↵erent ways

• In scientific image processing, image appearance can be changed
independently of pixel values by modifying a lookup table

1.1 Introduction

The smallest units from which an image is composed are its pixel . The word
pixel is derived from picture element and, as far as the computer is concerned,
each pixel is just a number. When the image data is displayed, the values of
pixels are usually converted into squares of particular colours – but this is only
for our benefit to allow us to get a fast impression of the image contents, i.e. the
approximate values of pixels and where they are in relation to one another. When
it comes to processing and analysis, we need to get past the display and delve
into the real data: the numbers.

This distinction between data (the pixel values) and display (the coloured
squares) is particularly important in fluorescence microscopy. The pixels given to
us by the microscope are measurements of the light being emitted by a sample.
From these we can make deductions, e.g. more light may indicate the presence
of a particular structure or substance, and knowing the exact values allows us
to make comparisons and quantitative measurements. On the other hand, the
coloured squares do not matter for measurements: they are just nice to look at
(Figure 1.1). Still, two related facts can cause us trouble:

1. Images that look the same can contain di↵erent pixel values

2. Images that look di↵erent can still contain the same pixel values

This makes it quite possible to analyze two di↵erent images that appear identical,
but to get very di↵erent results. Therefore to be sure we are observing and
measuring the right things, we need to know what is happening whenever we
open, adjust and save our images. It is not enough to trust our eyes.

3
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(a) Original image (b) Enlarged view from (a) (c) Pixel values of (b)

Figure 1.1: An image depicting an interestingly-matched couple I saw recently on the way
home from work. (a) & (b) The image is shown using small squares of di↵erent shades of
gray, where each square corresponds to a single pixel. This is only a convention used for
display; the pixels themselves are stored as arrays of numbers (c) – but looking at the
numbers directly it is pretty hard for us to visualize what the image contains.

1.2 ImageJ & Fiji

So to work with our digital images we do not just need any software that can
handle images: we need scientific software that allows us to explore our data and
to control exactly what happens to it.

ImageJ, developed at the National Institutes of Health by Wayne Rasband, is
designed for this purpose. The ‘J’ stands for Java: the programming language in
which it is written. It can be downloaded for free from http://imagej.net, and
its source code is in the public domain, making it particularly easy to modify and
distribute. Moreover, it can be readily extended by adding extra features in the
form of plugins, macros or scripts1.

This marvellous customisability has one potential drawback: it can be hard to
know where to start, which optional features are really good, and where to find
them all. Fiji, which stands for Fiji Is Just ImageJ, goes some way to addressing
this. It is a distribution of ImageJ that comes bundled with a range of add-ons
intended primarily for life scientists. It also includes its own additional features,
such as an integrated system for automatically installing updates and bug-fixes,
and extra open-source libraries that enable programmers to more easily implement
sophisticated algorithms.

Therefore, everything ImageJ can do can also be accomplished in Fiji (because
Fiji contains the full ImageJ inside it), but the converse is not true (because Fiji
contains many extra bits). Therefore in this course we will use Fiji, which can be
downloaded for free from http://fiji.sc/.

1All three of these consist of some computer-readable instructions, but they are written in
slightly di↵erent languages. Macros are usually the easiest and fastest to write, and we will start
producing our own in Chapter 13. For more complex tasks, the others my be preferable.
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Figure 1.2: The main user interface for Fiji.

1.2.1 The user interface

It can take some time to get used to the ImageJ/Fiji2 user interface, which may
initially seem less friendly and welcoming than that found in some commercial
software. But the good news is that, once you find your way around, it becomes
possible to do a lot of things that would simply not be possible in many other
software applications.

Some of the components we will be working with are shown in Figure 1.2. At
first, only the main window containing the menu, tool and status bars is visible,
and the others appear as needed when images are opened and processed. Should
you ever lose this main window behind a morass of di↵erent images, you can bring
it back to the front by pressing the Enter key.

1.2.2 Tips & tricks

Here are a few non-obvious tips that can making working with ImageJ or Fiji
easier, in order of importance (to me):

• Files can be opened quickly by dragging them (e.g. from the desktop,
Windows Explorer or the Mac Finder) onto the Status bar. Most plugins
you might download can also be installed this way.

• If you know the name of a command (including plugins) but forget where
it is hidden amidst the menus, type Ctrl + L (or perhaps just L) to
bring up the Command Finder – it may help to think of it as a List –
and start typing the name. You can run the command directly, or select

2At the risk of confusion, I will refer to ImageJ most of the time, and Fiji only whenever
discussing a feature not included within ImageJ.
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Show full information to find out its containing menu. Note that some
commands have similar or identical names, in which case they might only
be distinguishable by their menu.

• ImageJ’s Edit ! Undo has very limited abilities – it may be available if
you modify a single 2D image, but will not be if you process data with more
dimensions (see Chapter 2). While inconvenient if you are used to long
undo-lists in software like Microsoft Word or Adobe Photoshop, there is a
good rationale behind it: supporting undo could require storing multiple
copies of previous versions of the image, which might rapidly use up all the
available memory when using large data sets. The solution is to take care
of this manually yourself by choosing Image ! Duplicate... to create a
copy of the image before doing any processing you may not wish to keep.

• There is a wide range of shortcut keys available. Although the menus claim
you need to type Ctrl, you do not really unless the option under Edit !
Options ! Misc... tells you otherwise. You can also add more shortcuts
under Plugins ! Shortcuts ! Create Shortcut...

• To move around large images, you can use the scrolling tool , or
simply click and drag on the image while holding down the spacebar. A
small rectangular diagram (visible on the top left of the image window in
Figure 1.2) indicates which part of the entire image is currently being shown.

• There are more tools and options than meet the eye. Double-clicking and
right-clicking on icons in the Tool bar can each reveal more possibilities.

• Pressing Escape may abort the operation of any currently-running com-
mand. . . But it requires the command’s author to have implemented this
functionality. So it might not do anything.

1.2.3 Finding more information

Links to more information for using ImageJ, including a detailed manual, are
available at http://imagej.net/docs/. These resources also apply to Fiji. More
specific information for Fiji’s additional features, along with tutorials, can be
found at http://fiji.sc/wiki/index.php/Documentation.

Referencing Fiji and ImageJ
Whenever publishing work using Fiji or ImageJ, you should check their

respective websites for information regarding how to refer to them. Furthermore,
some specific plugins have their own published papers that should be cited
if the plugins are used. See http://imagej.net/docs/faqs.html and http:

//fiji.sc/wiki/index.php/Publications for more information.



1.3. DATA & ITS DISPLAY 7

(a) 16-bit (Grays LUT) (b) 8-bit (Grays LUT) (c) 16-bit (Fire LUT) (d) 8-bit (RGB)

Figure 1.3: Do not trust your eyes for image comparisons: di↵erent pixel values might be
displayed so that they look the same, while the same pixel values may be displayed so
that they look di↵erent. Here, only the images in (a) and (c) are identical to one another
in terms of their pixel values – and only these contain the original data given by the
microscope. The terms used in the captions will be explained in Chapters 3 and 4.

1.3 Data & its display

1.3.1 Comparing images

Now we return to the data/display dichotomy. In the top row of Figure 1.3, you
can see four images as they might be shown in ImageJ. The first and second pairs
both look identical to one another. However, it is only actually (a) and (c) that
are identical in terms of content. Since these contain the original pixel values
given by the microscope they could be analyzed, but analyzing either (b) or (d)
instead may well lead to untrustworthy results. Uses of

histograms
Comparing images,
calculating pixel

statistics, identifying
possible thresholds

(Chapter 9)

Reliably assessing the similarities and di↵erences between images in Figure 1.3
would therefore be impossible just based on their appearance in the top row, but
it becomes much easier if we consider the corresponding image histograms below.
These histograms (created with Analyze ! Histogram) depict the total number
of pixels with each di↵erent value within the image as a series of vertical bars,
displayed above some extra statistics – such as the maximum, minimum and mean
of all the pixels in that image. Looking at the histograms and the statistics below
make it clear that only (a) and (c) could possibly contain the same values.

Question 1.1
If you want to tell whether two images are identical, is comparing their
histograms always a reliable method? Solution
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1.3.2 Mapping colours to pixels

The reason for the di↵erent appearances of images in Figure 1.3 is that the first
three do not all use the same lookup tables (LUTs; sometimes alternatively called
colour maps), while in Figure 1.3d the image has been flattened . Flattening will
become relevant in Chapter 4, but for now we will concentrate on LUTs.

A LUT is essentially a table in which rows give possible pixel values alongside
the colours that should be used to display them. For each pixel in the image,
ImageJ finds out the colour of square to draw on screen by ‘looking up’ its value
in the LUT. This means that when we want to modify how an image appears, we
can simply change its LUT – keeping all our pixel values safely unchanged.

Practical 1.1
Using Spooked.tif as an example image, ex-
plore pixel values and LUTs in Fiji. Originally,
each pixel should appear with some shade of
gray (which indicates a correspondingly sombre
LUT). As you move the cursor over the image,
in the status bar at the top of the screen you
should see value = beside the numerical value
of whichever pixel is underneath the cursor.

If you then go to Image ! Lookup Tables ! ... and click on some other
LUT the image appearance should be instantly updated, but putting the cursor
over the same pixels as before will reveal that the actual values are unchanged.

Finally, if you want to ‘see’ the LUT you are using, choose Image ! Color

! Show LUT. This shows a bar stretching from 0 to 255 (the significance of
this range will be clearer after Chapter 3) with the colour given to each value
in between. Clicking List then shows the actual numbers involved in the LUT,
and columns for Red, Green and Blue. These latter columns give instructions
for the relative amounts of red, green and blue light that should be mixed to
get the right colour (see Chapter 4).

Why use di↵erent LUTs?

The ability to change LUTs has several advantages. A simple one is that we can
use LUTs to make the colours in our image match with the wavelengths of the
light we have detected, such as by showing a DAPI staining in blue or GFP in
green. But often this is not really optimal, and you may prefer to show an image
using some multicoloured LUT (e.g. Fire in ImageJ) that does not otherwise have
any physical relevance. This is because the eye is relatively poor at distinguishing
di↵erent shades of the same colour, and presenting the identical information using
many di↵erent colours can make di↵erences between pixel values more apparent.



1.3. DATA & ITS DISPLAY 9

(a) Grayscale (b) Grayscale (high contrast) (c) Fire LUT

Figure 1.4: The same image can be displayed in di↵erent ways by adjusting the contrast
settings or the LUT. Nevertheless, despite the di↵erent appearance, the values of the
pixels are the same in all three images.

Modifying the LUT can help make information visible

But swapping one set of LUT colours for another is not the only way to change
the appearance. We can also keep the same colours, but change which pixel values
each colour is used for. LUTs &

uniqueness
Note that the range
of possible values in
an image can easily
exceed the range of
colours the LUT
contains, in which
case pixels with

di↵erent values will

be displayed using

exactly the same

colour.

For example, suppose we have chosen a gray LUT. Most monitors can
(theoretically) show us 256 di↵erent shades of gray, so we can give a di↵erent
shade to pixels with values from 0–255, where 0 corresponds to black and 255
corresponds to white. But suppose our image only contains interesting values in
the range 5–50. Then we will only be using 46 rather similar shades of gray to
display it, and not using either our monitor or our eyesight to their full capacities.
It would easier to see what is happening if we made every pixel with a value  5
black and � 50 white, and then distributed all our available shades of gray to the
values in between. This would make full use of the colours we have in our LUT,
and give us an image with improved contrast. Of course, we can also apply the
same principle using any other LUT, replacing black and white with the first and
last colours in the LUT respectively.

Adjusting the display range

This type of LUT adjustment is done in ImageJ using the Image ! Adjust !
Brightness/Contrast... command (quickly accessed by typing Shift + C; see
Figure 1.4). The first two scrollbars that appear are called Minimum and Maximum,
and these define the thresholds below and above which pixels are given the first
or last LUT colour respectively. Modifying either of these sliders automatically
changes the Brightness and Contrast sliders. Although the terms brightness
and contrast are probably more familiar, it is usually easier to work with Minimum

and Maximum. If you know, for example, you do not care to see anything in the
darkest part of the image, you can increase the value of Minimum to clip it out of
the picture (only for display!), and devote more di↵erent colours for the part of
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(a) Fundamentally the same – despite
di↵erent appearances

(b) Fundamentally di↵erent – despite the
same (or similar) appearance

Figure 1.5: The same person may appear very di↵erent thanks to changes in clothing
and accessories (a). Conversely, quite di↵erent people might be dressed up to look very
similar, and it is only upon closer inspection that important di↵erences become apparent
(b). The true identity and dressing can be seen as analogous to an image’s pixel values
and its display.

the image that is really interesting.

Practical 1.2
Return again to Spooked.tif and investigate the contents of the image by
adjusting the Minimum and Maximum sliders. What are the best settings when
viewing the image?

After you have done this, explore the e↵ects of pressing the Auto, Reset, Set
and Apply buttons on the Brightness/Contrast panel.

(And subsequently be wary of using the Apply button ever again.)

Solution

Scientific image analysis is not photo editing!
One way to imagine the distinction between pixel values and a LUT is that the
former determine the real identity of the image, while the latter is simply the
clothing the image happens to be wearing (Figure 1.5). Our interest is in the
identity; the clothing is incidental, though might be chosen to accent certain
features of interest.

It is vital for scientific analysis that changing the LUTs, either by switching
the colours or adjusting Brightness/Contrast, does not mess up or otherwise
modify the underlying data. This is the case for the normal contrast controls in
ImageJ (if you avoid the tempting Apply button). But this feature would not
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(a) 600⇥ 600 pixel image and its properties (b) 75⇥ 75 pixel image and its properties

Figure 1.6: Two images with the same field of view, but di↵erent numbers of pixels –
and therefore di↵erent pixel sizes. In (a) the pixel width and height are both 64.2/600 =
0.107 µm. In (b) the pixel width and height are both 64.2/75 = 0.856 µm. For display,
(b) has been scaled up to look the same size as (a), so its larger pixels make it appear
‘blocky’.

be so important in other applications like photo editing, where only the final
appearance is what matters. Therefore, if you adjust the brightness, contrast
or ‘levels’ in Photoshop, for example, you really do change the underlying pixel
values – and, once changed, you cannot ‘change them back’ (apart from using
the Undo command) and expect to get your original values.

Therefore, if you have enhanced an image in Photoshop, your pixel values can
easily be changed in a way that makes their reliable interpretation no longer
possible!

1.4 Properties & pixel size

Hopefully by now you are appropriately paranoid about accidentally changing
pixel values and therefore compromising your image’s integrity, so that if in doubt
you will always calculate histograms or other measurements before and after
trying out something new to check whether the pixels have been changed.

This chapter ends with the other important characteristic of pixels for analysis:
their size, and therefore how measuring or counting them might be related back
to identifying the sizes and positions of things in real life. Sizes also need to be
correct for much analysis to be meaningful.

Pixel sizes are found in ImageJ under Image ! Properties..., where you
will see values for Pixel width and Pixel height, defined in terms of Unit of

Length. A useful way to think of these is as proportions of the size of the total
field of view contained within the image (see Figure 1.6). For example, suppose
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we are imaging an area with a width of 100 µm, and we have 200 pixels in the
horizontal direction of our image. Then we can treat the ‘width’ of a pixel as
100/200 = 0.5 µm. The pixel height can be defined and used similarly, and is
typically (but not necessarily) the same as the width.Voxels

In 3D, pixels are
sometimes called

voxels (from volume
pixels), so Voxel

depth is the spacing
between slices in a

z-stack (see
Chapter 2).

Pixel squareness
Talking of pixels as having (usually) equal widths and heights makes them
sound very square-like, but earlier I stated that pixels are not squares – they
are just displayed using squares.

This slightly murky philosophical distinction is
considered in Alvy Ray Smith’s technical memo (right),
the title of which gives a good impression of the central
thesisa. In short, pushing the pixels-are-square model
too far leads to confusion in the end (e.g. what would
happen at their ‘edges’?), and does not really match up
to the realities of how images are recorded (i.e. pixel
values are not determined by detecting light emitted
from little square regions, see Chapter 15). Alternative
terms, such as sampling distance, are often used instead
of pixel sizes – and are potentially less misleading. But
ImageJ uses pixel size, so we will as well.

ahttp://alvyray.com/Memos/CG/Microsoft/6_pixel.pdf

1.4.1 Pixel sizes and measurements

Knowing the pixel size makes it possible to calibrate size measurements. For
example, if we measure some structure horizontally in the image and find that it
is 10 pixels in length, with a pixel size of 0.5 µm, we can deduce that its actual
length in reality is (roughly!) 10⇥ 0.5 = 5 µm.

This calibration is often done automatically when things are measured in
ImageJ (Chapter 7), and so the sizes must be correct for the results to be
reasonable. All being well, they will be written into an image file during acquisition
and subsequently read – but this does not always work out (Chapter 5), and
so Properties... should always be checked. If ImageJ could not find sensible
values in the image file, by default it will say each pixel has a width and height of
1.0 pixel. . . not very informative, but at least not wrong. You can then manually
enter more appropriate values if you know them.

1.4.2 Pixel sizes and detail

In general, if the pixel size in a fluorescence image is large then we cannot see very
fine detail (see Figure 1.6b). However, the subject becomes complicated by the
di↵raction of light whenever we are considering scales of hundreds of nanometres,
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so that acquiring images with smaller pixel sizes does not necessarily bring us
extra information – and might actually become a hindrance (see Chapters 15 and
16).
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Solutions

Question 1.1 No! It is possible for two quite di↵erent images to have identical
histograms. For example, if you imagine having an image and then randomly
reshu✏ing its pixels to get a second image, then the histogram would be unchanged
but the image itself would be. Other, more subtle di↵erences could also lead
to di↵erent arrangements of pixels (and therefore di↵erent images), but similar
appearances and identical histograms and statistics.

Nevertheless, histogram comparison is fast (in ImageJ, just click on each image
and press H) and a pretty good guide. Non-identical histograms would least show
that images are categorically not the same. A more reliable method of comparing
images will come up in Chapter 8.

Practical 1.2 When the Minimum is set to 0 and the Maximum is greatly reduced,
an eerier picture should emerge. This was always present in the pixel data, but
probably could not be seen initially.

In images like this, the ‘best’ contrast setting really depends upon what it is
you want to see – although Chapter 8 describes one way to try to see ‘everything
at once’.

With regard to the buttons, Auto choses contrast settings that might look
good (by bringing Minimum and Maximum a bit closer to one another). Reset

makes sure Minimum and Maximum match with the actual minimum and maximum
pixel values in the image (or 0 and 255 for an 8-bit image – Chapter 3), while
Set allows you to input their values manually.

Apply is altogether more dangerous. It really does change the pixel values of
the image. This loses information and so is rarely a good idea! After pressing
Apply, you are very likely not to be able to get your original pixel values back
again.
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Dimensions

Chapter outline

• The number of dimensions of an image is the number of pieces
of information required to identify each pixel

• In ImageJ, images with more than 2 dimensions are stored in a
stack or hyperstack

2.1 Identifying dimensions

The idea of image dimensions is straightforward: the number of dimensions is the
number of pieces of information you need to know to identify individual pixels.

For example, in the most familiar 2D images, you can uniquely identify a
pixel by knowing its x and y spatial coordinates. But if you needed to know x

and y coordinates, a z-slice number, a colour channel and a time point then you
would be working with 5D data (Figure 2.1). You could throw away one of these

(a) 0 dimensional (b) 1 dimensional (c) 2 dimensional (d) 3 dimensional

(e) 4 dimensional (f) 5 dimensional

Figure 2.1: Depictions of images with di↵erent numbers of dimensions. (a) A single value
is considered to have 0 dimensions. (b–f) Additional dimensions are added, here in the
following order: x coordinate (1), y coordinate (2), channel number (3), z slice (4) and
time point (5).

15
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dimensions – any one at all – and get a 4D image, and keep going until you have
a single pixel remaining: a 0D image. Throw away that, and you no longer have
an image.

In principle, therefore, 2D images do not need to have x and y dimensions.
The dimensions could be x and z, or y and time, for example. But while we may
play around with the identity of dimensions, the important fact remains: an nD
image requires n pieces of information to identify each pixel.

2.2 Stacks & Hyperstacks

In the beginning there were 2D images. Then ImageJ supported stacks, which
allowed an extra dimension that could either include di↵erent time points or
z-slices – but not both. Nowadays, hyperstacks are the more flexible derivative
of stacks, and can (currently) store up to 5 dimensions without getting them
confused.

Hyperstack flexibility
A hyperstack can contain 0–5 dimensions, while a stack can only contain 0–3.
So why worry about stacks at all?

The main reason comes from ImageJ’s evolution over time. Some commands –
perhaps originating in the pre-hyperstack era – were written only for 2D or 3D
data. Trying to apply them to 4D or 5D images may then cause an error, or it
may simply produce strange results. As commands become updated the chance
of dimension-related errors and strangeness reduces, and the stack-hyperstack
distinction is disappearing.

2.2.1 Navigating dimensions

With a stack or hyperstack, only a single 2D slice is ‘active’ at any one time.
Extra sliders at the bottom of the image window are used to change which slice
this is (Figure 2.2). In the case of multichannel images, any changes to lookup
tables are only made to slices of the currently-active channel.

2.2.2 Correcting dimensions

The dimensions of an image can be seen in the top entries of Image !
Properties.... Occasionally these can be incorrect: perhaps di↵erent z-slices
were wrongly interpreted as time points when a file was opened, or the presence
of multiple channels was not spotted. This can a↵ect not only the display,
but also some processing or measurements. Fortunately, dimensions can be
corrected manually using the command Image ! Hyperstack ! Stack to

Hyperstack... – provided you know, or can work out, the right values.
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(a) 2D image (b) 3D (hyper?)stack (c) 4D hyperstack

Figure 2.2: Stacks in ImageJ contain 3D data, while hyperstacks contain up to 5 dimensions.
Both include additional sliders, not required for 2D images, to shift along the additional
dimensions and make di↵erent slices active.

Practical 2.1
Something terrible has befallen the file lost dimensions.tif, so that it is
displayed as a 3D stack, when in reality it should have more dimensions. By
inspecting the file, identify how many channels, z-slices and time points it
originally contained, and set these using Stack to Hyperstack... so that it
displays properly. What are the correct dimensions? Solution

2.3 Presenting dimensions

To the computer, an image is stored as a lot of pixel values, irrespective of the
number of dimensions it should have. However, as the number of dimensions
increases, providing a useful representation of all the values at once becomes
tricky. The z dimension is most troublesome of all, because there are are relatively
natural choices for channels and time points (i.e. to use di↵erent colours and to
show a movie), so we will concentrate on it.

2.3.1 Viewing angles: your data in a box

It is helpful to consider the pixels of 3D data as being densely packed into
a transparent box that could be viewed from di↵erent angles (Figure 2.3a).
Visualizations like this can be made with Plugins ! 3D Viewer. They are
particularly good for generating attractive figures or impressive movies, but
details can be hard to interpret because they are influenced by perspective and
which pixels overlap from our current viewing angle.

To systematically explore data, therefore, it is usually preferable to look inside
the box by generating 2D images from only 3 angles: from above (xy) and from
two remaining sides (xz and yz). These 3 viewpoints are orthogonal (i.e. they
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(a) Volume rendering (b) Orthogonal views

Figure 2.3: Two ways to look at 3D data, using the 3D Viewer for ‘volume rendering’
and the Orthogonal Views command.

are oriented at 90� to one another), and the command Image ! Stacks !
Orthogonal Views makes this easy. It opens up 2 extra windows, so that when
you click at any point on the original xy view, you are shown cross-sections
through that point from each direction.

Reslicing

The Orthogonal Views command really only gives you a temporary look at the
data from di↵erent angles, but you do not have full control over the extra views:
you have limited influence over the brightness and contrast, for example, and all
your clicks on the images get intercepted to update the display, which means you
cannot draw regions of interest (Chapter 7).

If you instead want to rotate the entire stack so that you can browse through
what are e↵ectively xz or yz slices and do whatever you want to them, the
command you need is Image ! Stacks ! Reslice [/]....

2.3.2 Z-projections

Another extremely useful way to collapse the data from 3 dimensions into 2 is to
use a z-projection. The basic idea is of taking all the pixels in a stack that have
the same x and y coordinate, applying some operation to them, and putting the
result of that operation into a new 2D image at the same x and y position.

Two important operations in fluorescence imaging are to add all the pixels with
the same xy coordinates (a sum projection), or to compare the pixels and select
only the largest values (amaximum projection), both implemented under Image !
Stacks ! Z Project.... The advantage of the first is that every pixel value has
an influence on the result: which is good if you plan to measure intensities in the
projection image (although quantitative analysis of projections can be somewhat
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(a) Sum projection (b) Maximum projection (c) Minimum projection

Figure 2.4: Three projections of a z-stack. Sum projections often look similar to maximum
projections, but less sharp (a).

dangerous, e.g. if intensity measurements are compared between projections made
from stacks with di↵erent numbers of slices). The advantage of the second is
that it tends to give a nice and sharp looking image, since structures are at their
brightest in the planes where they are in focus (Figure 2.4b). Naturally, you could
make a minimum intensity projection if you liked, but a very out-of-focus-looking
image is generally less desirable (Figure 2.4c).

Question 2.1
Imagine computing a sum and a maximum projection of a 10-slice stack
containing a large, in-focus nucleus. How might each of these projections be
a↵ected if your stack contained:

• 4 additional, out-of-focus slices (with non-zero pixel values)

• several very bright, isolated, randomly distributed outlier pixels – with
values twice what they should be (due to noise)

Solution

Question 2.2

Shown on the right are sum and maximum
projections of an image containing 3 beads: A,
B and C. Which projection is which? And
which projection, if either, would be suitable for
determining the pair of beads that are closest to
one another?

Solution
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Practical 2.2

Z-projections are all very well,
but how would you make an
x, y or time projection?
If you want to try this
out, you can use the im-
age File ! Open Samples

! Mitosis, which has all 5
dimensions to work with.

Max z-projection Max time-projection Max x-projection

Note: Choose File ! Open Samples ! Cache Sample Images to avoid
needing to re-download sample images every time you want them.

Solution
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Solutions

Practical 2.1 lost dimensions.tif should contain 2 channels, 3 z-slices and
16 time points. The dimensions are in the default order (xyczt).

Question 2.1 Additional, out-of-focus planes will have an e↵ect upon sum
projections: increasing all the resulting pixel values. However, the extra planes
would have minimal e↵ects upon maximum projections, since they are unlikely to
contain higher values than the in-focus planes.

Maximum projections will, however, be very a↵ected by bright outliers: these
will almost certainly appear in the result with their values unchanged. Such
outliers would also influence a sum projection, but less drastically because each
pixel would contain the sum of 9 reasonable values and only 1 large value (unless,
by bad luck, many outliers happen to overlap at the same xy coordinate).

Question 2.2 Identifying the projections is tricky since the contrast settings
could be misleading, although here they are not. . . the sum projection is on the
left, and the maximum on the right. The sum projection looks less sharp since
the regions around the beads contains out-of-focus light, which becomes more
obvious when all the slices are added.

As for determining the distance between beads, neither projection is very good.
Either could be used to determine the distance in x and y, but if one bead is
much, much deeper in the stack then all information about this z displacement
would be lost in the projection. This is one reason why it is not good to base
analysis on projections alone. Orthogonal views would help.

Question 2.2 The Z Project... command will also work on time series to
make a time projection, assuming there are not extra z-slices present too. If
there are, you can use Image ! Hyperstack ! Re-order Hyperstacks... or
Stack to Hyperstack... to switch the dimension names and trick ImageJ into
doing what you want.

You can make x and y projections by running Reslice [/]... first, then
making the projection.
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Types & bit-depths

Chapter outline

• The bit-depth & type of an image determine what pixel values it
can contain

• An image with a higher bit-depth can (potentially) contain more
information

• For acquisition, most images have the type unsigned integer

• For processing, it is often better to use floating point types

• Attempting to store values outside the range permitted by the type
& bit-depth leads to clipping

3.1 Possible & impossible pixels

As described in Chapter 1, each pixel has a numerical value – but a pixel cannot
typically have any numerical value it likes. Instead, it works under the constraints
of the image type and bit-depth. Ultimately the pixels are stored in some binary
format: a series of bits (binary digits), i.e. ones and zeros. The bit-depth
determines how many of these ones and zeros are available for the storage of each
pixel. The type determines how these bits are interpreted.

3.2 Representing numbers with bits

Suppose you are developing a code to store numbers, but in which you are only
allowed to write ones and zeros. If you are only allowed a single one or zero, then
you can only actually represent two di↵erent numbers. Clearly, the more ones
and zeros you are allowed, the more unique combinations you can have – and
therefore the more di↵erent numbers you can represent in your code.

3.2.1 A 4-bit example

The encoding of pixel values in binary digits involves precisely this phenomenon.
If we first assume we have a 4 bits, i.e. 4 zeros and ones available for each pixel,
then these 4 bits can be combined in 16 di↵erent ways:

23
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0000 ! 0 0100 ! 4 1000 ! 8 1100 ! 12
0001 ! 1 0101 ! 5 1001 ! 9 1101 ! 13
0010 ! 2 0110 ! 6 1010 ! 10 1110 ! 14
0011 ! 3 0111 ! 7 1011 ! 11 1111 ! 15

http://xkcd.com/953/

Here, the number after the arrow shows how each
sequence of bits could be interpreted. We do not have
to interpret these particular combinations as the integers
from 0–15, but it is common to do so – this is how binary
digits are understood using an unsigned integer type. But
we could also easily decide to devote one of the bits to giving
a sign (positive or negative), in which case we could store
numbers in the range -8 – +7 instead using precisely the
same bit combinations. This would be a signed integer type.
Of course, in principle there are infinite other variations
of how we interpret our 4-bit binary sequences (integers in
the range -7 – +8, even numbers between 39 to 73, the first
16 prime numbers etc.), but the ranges I’ve given are the
most normal. In any case, knowing the type of an image is
essential to be able to decipher the values of its pixels from how they are stored
in binary.

3.2.2 Increasing bit depths

So with 4 bits per pixel, we can only represent 16 unique values. Each time we
include another bit, we double the number of values we can represent. Computers
tend to work with groups of 8 bits, with each group known as 1 byte. Microscopes
that acquire 8-bit images are still very common, and these permit 28 = 256
di↵erent pixel values, which understood as unsigned integers fall in the range
0–255. The next step up is a 16-bit image, which can contain 216 = 65536 values:
a dramatic improvement (0–65535). Of course, because twice as many bits are
needed for each pixel in the 16-bit image when compared to the 8-bit image, twice
as much storage space is required.

3.2.3 Floating point types

Although the images we acquire are normally composed of unsigned integers, we
will later explore the immense benefits of processing operations such as averaging
or subtracting pixel values, in which case the resulting pixels may be negative
or contain fractional parts. Floating point type images make it possible to store
these new values in an e�cient way.

Floating point pixels have variable precision depending upon whether or not
they are representing very small or very large numbers. Representing a number
in binary using floating point is analogous to writing it out in standard form, i.e.
something like 3.14⇥ 108. In this case, we have managed to represent 314000000



3.3. LIMITATIONS OF BITS 25

using only 4 digits: 314 and 8 (the 10 is already known in advance). In the binary
case, the form is more properly something like ±2M ⇥N : we have one bit devoted
to the sign, a fixed number of additional bits for the exponent M , and the rest to
the main number N (called the fraction). Special values

Floating point
images can also
contain 3 extra

values:
+1, �1 and NaN

(indicating Not a

Number : the pixel
has no valid value)

A 32-bit floating point number typically uses 8 bits for the exponent and
23 bits for the fraction, allowing us to store a very wide range of positive and
negative numbers. A 64-bit floating point number uses 11 bits for the exponent
and 52 for the fraction, thereby allowing both an even wider range and greater
precision. But again these require more storage space than 8- and 16-bit images.

Question 3.1

The pixels on the right all belong to di↵erent
images. In each case, identify what possible
types those images could be.

Solution

3.3 Limitations of bits

The main point of Chapter 1 is that we need to keep control of our pixel values so
that our final analysis is justifiable. In this regard,there are two main bit-related
things that can go wrong when trying to store a pixel value in an image:

1. Clipping: We try to store a number outside the range supported, so that
the closest valid value is stored instead, e.g. trying to put -10 and 500 into
an 8-bit unsigned integer will result in the values 0 and 255 being stored
instead.

2. Rounding: We try to store a number that cannot be represented exactly,
and so it must be rounded to the closest possible value, e.g. trying to put
6.4 in an 8-bit unsigned integer image will result in 6 being stored instead.

3.3.1 Data clipping

Of the two problems, clipping is usually the more serious, as shown in Figure 3.1.
A clipped image contains pixels with values equal to the maximum or minimum
supported by that bit-depth, and it is no longer possible to tell what values those
pixels should have. The information is irretrievably lost.

Clipping can already occur during image acquisition, where it may be called
saturation. In fluorescence microscopy, it depends upon three main factors:

1. The amount of light being emitted. Because pixel values depend upon how
much light is detected, a sample emitting very little light is less likely to
require the ability to store very large values. Although it still might because
of. . .
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(a) 16-bit original (b) 8-bit clipped (c) 8-bit scaled

Figure 3.1: Storing an image using a lower bit-depth, either by clipping or by scaling
the values. The top row shows all images with the same minimum and maximum values
to determine the contrast, while the middle row shows shows the same images with
the maximum set to the highest pixel value actually present. The bottom row shows
horizontal pixel intensity profiles through the centre of each image, using the same vertical
scales. One may infer that information has been lost in both of the 8-bit images, but
more much horrifically when clipping was applied. The potential reduction in information
is only clear in (c) when looking at the profiles, where rounding errors are likely to have
occurred.

2. The gain of the microscope. Quantifying very tiny amounts of light accurately
has practical di�culties. A microscope’s gain e↵ectively amplifies the amount
of detected light to help overcome this before turning it into a pixel value
(see Chapter 17). However, if the gain is too high, even a small number of
detected photons could end up being over-amplified until clipping occurs.

3. The o↵set of the microscope. This e↵ectively acts as a constant being added
to every pixel. If this is too high, or negative, it can also push the pixels
outside the permissible range.

If clipping occurs, we no longer know what is happening in the brightest or
darkest parts of the image – which can thwart any later analysis. Therefore during
image acquisition, any gain and o↵set controls should be adjusted as necessary to
make sure clipping is avoided.
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Question 3.2
When acquiring an 8-bit unsigned integer image, is it fair to say your data is
fine so long as you do not store pixel values < 0 or > 255? Solution

Question 3.3
The bit-depth of an image is probably some multiple of 8, but the bit-depth
that a detector (e.g. CCD) can support might not be. For example, what is
the maximum value in a 16-bit image that was acquired using a camera with
a 12-bit output? And what is the maximum value in a 8-bit image acquired
using a camera with a 14-bit output? Solution

3.3.2 Rounding errors

Rounding is a more subtle problem than clipping. Again it is relevant as early
as acquisition. For example, suppose you are acquiring an image in which there
really are 1000 distinct and quantifiable levels of light being emitted from di↵erent
parts of a sample. These could not possibly be given di↵erent pixel values within
an 8-bit image, but could normally be fit into a 16-bit or 32-bit image with lots
of room to spare. If our image is 8-bit, and we want to avoid clipping, then we
would need to scale the original photon counts down first – resulting in pixels
with di↵erent photon counts being rounded to have the same values, and their
original di↵erences being lost.

Nevertheless, rounding errors during acquisition are usually small. Rounding
can be a bigger problem when it comes to processing operations like filtering,
which often involve computing averages over many pixels (Chapter 10). But,
fortunately, at this post-acquisition stage we can convert our data to floating
point and then get fractions if we need them.

Floating point rounding errors
Using floating point types does not completely solve rounding issues. In
fact, even a 64-bit floating point image cannot store all useful pixel values
with perfect precision, and seemingly straightforward numbers like 0.1 are
only imprecisely represented. But this is not really unexpected: this binary
limitation is similar to how we cannot write 1/3 in decimal exactly, but rather
we can get only get closer and closer for so long as we are willing to add more 3’s
after the decimal point. Still, rounding 0.1 to 0.100000001490116119384765625
(a possible floating point representation) is not so bad as rounding it to 0 (an
integer representation), and the imprecisions of floating point numbers in image
analysis are usually small enough to be disregarded.

See http://xkcd.com/217/ for more information.
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Illustration of the comparative accuracy of (left to right) 8-bit, 16-bit and
32-bit images.

Figure 3.2: Building blocks and bit depth. If an 8-bit image is like creating a sculpture
out of large building blocks, a 16-bit image is more like using lego and a 32-bit floating
point image resembles using clay. Anything that can be created with the blocks can also
be made from the lego; anything made from the lego can also be made from the clay.
This does not work in reverse: some complex creations can only be represented properly
by clay, and building blocks permit only a crude approximation at best. On the other
hand, if you only need something blocky, it’s not really worth the extra e↵ort of lego or
clay. And, from a very great distance, it might be hard to tell the di↵erence.

3.3.3 More bits are better. . . usually

From considering both clipping and rounding, the simple rule of bit-depths emerges:
if you want the maximum information and precision in your images, more bits
are better. This is depicted in Figure 3.2. Therefore, when given the option of
acquiring a 16-bit or 8-bit image, most of the time you should opt for the former.

Question 3.4
Although more bits are better is a simple rule we can share with those who
do not really get the subtleties of bit-depths, it should not be held completely
rigorously. When might more bits not be better? Solution

3.4 Converting images in ImageJ

For all that, sometimes it is necessary to convert an image type or bit-depth, and
then caution is advised. This could be required against your better judgement,
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but you have little choice because a particular command or plugin that you need
has only been written for specific types of image. And while this could be a rare
event, the process is unintuitive enough to require special attention.

Conversions are applied in ImageJ using the commands in the Image ! Type

! ... submenu. The top three options are 8-bit (unsigned integer), 16-bit
(unsigned integer) and 32-bit (floating point), which correspond to the types
currently supported1.

In general, increasing the bit-depth of an image should not change the pixel
values: higher bit-depths can store all the values that lower bit-depths can
store. But going backwards that is not the case, and when decreasing bit-depths
one of two things can happen depending upon whether the option Scale When

Converting under Edit ! Options ! Conversions... is checked or not.

• Scale When Converting is not checked: pixels are simply given the closest
valid value within the new bit depth, i.e. there is clipping and rounding as
needed.

• Scale When Converting is checked: a constant is added or subtracted,
then pixels are further divided by another constant before being assigned to
the nearest valid value within the new bit depth. Only then is clipping or
rounding applied if it is still needed.

Perhaps surprisingly, the constants involved in scaling are determined from the
Minimum and Maximum in the current Brightness/Contrast... settings: the
Minimum is subtracted, and the result is divided by Maximum - Minimum. Any pixel
value that was lower than Minimum or higher than Maximum ends up being clipped.
Consequently, converting to a lower bit-depth with scaling can lead to di↵erent
results depending upon what the contrast settings were.

Question 3.5
Why is scaling usually a good thing when reducing the bit-depth, and why is a
constant usually subtracted before applying this scaling?

Hint: As an example, consider how a 16-bit image containing values in the
range 4000–5000 might be converted to 8-bit first without scaling, and then
alternatively by scaling with or without the initial constant subtraction. What
constants for subtraction and division would usually minimize the amount of
information lost when converting to 8-bit image, limiting the errors to rounding
only and not clipping? Solution

1The remaining commands in the list involve colour, and are each variations on 8-bit unsigned
integers (see Chapter 4).
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Practical 3.1
Make sure that the Scale when Converting option is turned on (it should
be by default). Then using a suitable 8-bit sample image, e.g. File ! Open

Samples ! Boats, explore the e↵ects of brightness/contrast settings when
increasing or decreasing bit-depths. How should the contrast be set before
reducing bit-depths? And can you destroy the image by simply increasing then
decreasing the bit-depth? Solution
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Solutions

Practical 3.1 The possible image types, from left to right:

1. Signed integer or floating point

2. Unsigned integer, signed integer or floating point

3. Floating point

Question 3.2 No! At least, not really.
You cannot store pixels outside the range 0–255. But if your image contains

pixels with either of those extreme values, you cannot be sure whether or not
clipping has occurred. Therefore, you should ensure images you acquire do not
contain any pixels with the most extreme values permitted by the image bit-depth.
If you want to know for sure you can trust your 8-bit data is not clipped, the
maximum range would be 1–254.

Question 3.3 The maximum value of a 16-bit image obtained using a 12-bit
camera is 4095 (i.e. 212-1). The maximum value of an 8-bit image obtained using
a 14-bit camera is 255 – the extra bits of the camera do not change this. But if
the image was saved in 16-bit instead, the maximum value would be 16383.

So be aware that the actual range of possible values depends upon the
acquisition equipment as well as the bit-depth of the image itself. The lower
bit-depth will dominate.

Question 3.4 Reasons why a lower bit depth is sometimes preferable to a
higher one include:

• A higher bit-depth leads to larger file sizes, and potentially slower processing.
For very large datasets, this might be a bigger issue that any loss of precision
found in using fewer bits.

• The amount of light detected per pixel might be so low that thousands
of possible values are not required for its accurate storage, and 8-bits (or
even fewer) would be enough. For the light-levels in biological fluorescence
microscopy, going beyond 16-bits would seldom bring any benefit.

But with smallish datasets for which processing and storage costs are not a
problem, it is safest to err on the side of more bits than we strictly need.
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Question 3.5 In the example given, converting to 8-bit without any scaling
would result in all pixels simply becoming 255: all useful information in the image
would be lost.

With scaling but without subtraction, it would make sense to divide all pixel
values by the maximum in the image divided by the maximum in the new bit
depth, i.e. by 5000/255. This would then lead to an image in which pixels fall
into the range 204–255. Much information has clearly been lost: 1000 potentially
di↵erent values have now been squeezed into 52.

However, if we first subtract the smallest of our 16-bit values (i.e. 4000),
our initial range becomes 0–1000. Divide then by 1000/255 and the new values
become scaled across the full range of an 8-bit image, i.e. 0–255. We have still lost
information – but considerably less than if we had not subtracted the constant
first.

Practical 3.1 It is a good idea to choose Reset in the Brightness/Contrast...
window before reducing any bit-depths for 2D images (see Section 12.2 for more
dimensions).

You can destroy an image by increasing its bit-depth, adjusting the bright-
ness/contrast and then decreasing the bit-depth to the original one again. This
may seem weird, because clearly the final bit-depth is capable of storing all the
original pixel values. But ImageJ does not know this and does not check, so it will
simply do its normal bit-depth-reducing conversion based on contrast settings.
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Channels & colours

Chapter outline

• Images with multiple colour channels may display di↵erently in
di↵erent software

• RGB images are a special case, and these look consistent across
di↵erent software

• In ImageJ, multichannel images that are not RGB may be referred
to as composite images

• Conversion of composite to RGB often loses information!

4.1 Di↵erent kinds of colour image

One way to introduce colour into images is to use a suitable LUT, as described in
Chapter 1. However, then the fact that di↵erent colours could be involved in the
display of such images was really only incidental: at each location in the image
there was still only one channel, one pixel and one value.

For images in which colour is more intrinsic – that is, when the channel number
is an extra dimension (Chapter 2) and we want to display channels superimposed
on top of one another – things become more complex, because the precise colour
in the display for one location now depends upon a combination of multiple pixel
values mixed together.

There are two main types of colour image we will consider in this chapter, and
it is important to know the di↵erence between them:

1. Multichannel / composite images – good for analysis, since they can contain
the original pixels given by the microscope, but may appear di↵erently (or
not be readable at all) in some software

2. RGB images – good for display, because they have a consistent appearance,
but often unsuitable for quantitative analysis because original pixel values
are likely to be lost

33
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(a) Composite image (b) Red channel (c) Green channel (d) Blue channel

Figure 4.1: ImageJ composite image sample Fluorescent Cells. Using the Channels
Tool... and the slider at the bottom of the window, you can view the channels individually
or simultaneously.

4.2 Multichannel images

We consider a ‘true’ multichannel image here to be one in which the channel
number is an extra dimension. Pixel values for each channel are often determined
from light that has been filtered according to its wavelength. In principle, any
LUT might be applied to each channel, but it makes sense to choose LUTs
that somehow relate to the wavelength (i.e. colour) of light detected for the
corresponding channels. Channels can then be overlaid on top of one another,
and their colours further merged for display (e.g. high values in green and red
channels are shown as yellow).

The important feature of these images is that the actual channel information
is always retained, and so the original pixel values remain available. This means
you can still extract channels or adjust their LUTs as needed.

4.2.1 Composite images in ImageJ

In ImageJ, such representations of multiple channels are sometimes known as
composite images. An example can be opened by selecting File ! Open Samples

! Fluorescent Cells (400K) (Figure 4.1). As you move the slider at the
bottom of the image, it might not look like much is happening. But if you
also open the Brightness/Contrast... tool you can see that the colour of the
histogram changes for each slider position. Adjusting the contrast then adjusts it
only for the current channel. This is very useful because quite di↵erent contrast
settings can be required for each channel to get a decent final appearance. Also,
as you move the mouse over the image the ‘value’ shown in the status bar is the
pixel value only for that channel.

Composite images allow us to see multiple channels at the same time. But
sometimes this masks information and it helps to look at each channel individually.
One way to do this is to choose Image ! Color ! Split Channels, which will
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give you separate images for each channel. But a more powerful option is to select
Image ! Color ! Channels Tool....

Practical 4.1
Using the Fluorescent Cells (400K) image, explore the use of the Channels
Tool... until you are comfortable with what it does, including what happens
when you click on the colours under More>>.

How do composite images relate to the LUTs we described before? Try out
some of the commands in Image ! Lookup Tables ! when investigating
this. Solution

4.3 RGB images

Composite images can contain any number of channels, and these channels can
have any of the bit-depths ImageJ supports (see Chapter 3) – so long as all
channels have the same bit-depth. By contrast, RGB images invariably have 3
channels, and each channel is 8-bit1. Furthermore, the channel colours in an RGB
image are fixed to red, green and blue.

This already makes clear that composite images can (at least potentially)
contain much more information. However, the inflexibility of RGB images has
one important advantage: compatibility. Computer monitors generate colours for
display by mixing red, green and blue light. Therefore RGB images can dictate
directly how much of each colour should be used; the values in each channel really
do determine the final image appearance, without any ambiguity regarding which
LUTs should be applied because these are already known. Therefore all software
can display RGB images in the same way.

4.3.1 RGB images in ImageJ

RGB images can be easily distinguished from composite images in ImageJ both
because they do not have an additional slider at the bottom to move between
channels, and because the text RGB appears at the top of the image window in
place of the bit-depth. Also, moving the cursor over an RGB image leads to 3
numbers following the value label in the main status bar: the pixel values for
each of the channels.

Changing the brightness/contrast of an RGB image is also di↵erent. Making
adjustments using the normal Brightness/Contrast... tool leads to the
appearance of all 3 channels being a↵ected simultaneously. And should you

1This is the case in ImageJ, and usually (but not always) in other software. For example, it
is possible for an RGB image to be 16-bit, and some contain an extra ‘alpha’ channel (which
relates to transparency), and so might be called ARGB or RGBA. But such images do not often
occur in science.
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happen to click another image before returning to the original RGB image, you
will find that any contrast settings have been permanently applied – and the
original data probably cannot be restored!

4.4 Comparison of colour images

Only composite images can therefore store more than three channels, or data
with a bit-depth higher than 8. Consequently, if acquisition software provides
the option to save data in an RGB format, this temptation should normally be
resisted – unless you also save the image in the software manufacturer’s preferred,
non-RGB format, and only use this latter version for analysis. The reason is that
the conversion of a composite image to RGB can result in a significant loss of
information, and if we only have the RGB version it may be impossible for us to
say whether or not this loss has occurred.

Practical 4.2
You can test the compatibility of composite and RGB images by opening File

! Open Samples ! HeLa Cells image, and saving it using File ! Save

As ! Tiff... both before and after running Image ! Type ! RGB Color

to convert the original 16-bit composite data to RGB. Try then opening both
saved images in other software (e.g. Microsoft PowerPoint) and compare their
appearance.

Practical 4.3
Think of at least 2 ways in which converting a composite image to RGB can
lose information.

You can explore this by comparing the images Cell composite.tif and
Cell RGB.tif. The Image ! Color ! Split Channels command should
help. Solution

Still, there is no way of displaying a composite image that cannot be replicated
by an RGB image, because the monitor itself works with RGB data (translated
to red, green and blue light). Therefore for creating figures or presentations,
converting data to RGB is a very good idea for the compatibility advantages it
brings. In the end, it is normal to need to keep at least two versions of each
dataset: one in the original (multichannel / composite) format, and one as RGB
for display. This RGB image is normally created as the final step, after applying
any processing or LUT adjustments to the original data.

4.4.1 Other colour spaces

Since monitors work with RGB images, in practice what you are actually seeing on
screen is always an RGB image – even when we are actually working with the data
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in a composite image. The RGB version is just quietly made in the background
based on the composite data so that the monitor can give us something to look at.
If we convert the composite image to RGB we then basically just throw away all
the extra useful information the composite contained, and keep only the displayed
version.

However, there are more ways to represent colours than just mixtures of red,
green and blue light. One familiar example is using cyan, magenta, yellow and
black ink – leading to a CMYK representation of colour. In practice, fewer colours
can be faithfully reproduced using CMYK when compared to RGB, which is one
reason why printed images often do not seem to have quite the same colours as
the same images on screen.

The other main colour representation that turns up in ImageJ is HSB, which
stands for Hue, Saturation and Brightness. An RGB image can be converted to
HSB using Image ! Type ! HSB Stack. In practice, this representation can
be useful for detecting features in colour images that were originally RGB (e.g.
conventional photographs), but it is largely irrelevant for fluorescence microscopy.

Choosing channel colours

By changing the LUTs, channels can be assigned
any colour you like. Although red/green images
are widespread, especially for colocalization, they
are particularly unhelpful for colourblind people.
More accessible images can be created by switching
the LUTs of at least one channel to something
more suitable (e.g. Red ! Magenta) – although
displaying both channels separately is better still.

You can also test the e↵ects of di↵erent colours using the Fiji command
Image ! Color ! Simulate Color Blindness (note that this may require
converting the image to RGB first).

More information about generating figures with suitable colours is available at
http://www.nature.com/nmeth/journal/v8/n6/full/nmeth.1618.html.

Question 4.1
ImageJ has two di↵erent copying commands, Edit ! Copy and Edit ! Copy

to System. Why?

Note: When investigating this, you should explore Edit ! Paste, alongside
two commands in the File ! New ! submenu. Be on the lookout for any
conversions. Solution



38 CHAPTER 4. CHANNELS & COLOURS

Solutions

Practical 4.1 Each individual channel in a composite image is really just being
shown with a LUT – most often one that is predominantly red, green or blue. The
final displayed colour results from mixing the channel colours together. Therefore,
in principle any LUT might be used for each channel. But unconventional LUT
choices can easily result in rather avant garde images that are di�cult to interpret.

Practical 4.3 One way that converting an image to RGB can lose information
is if the original data is 16-bit before conversion and 8-bit afterwards, causing
rounding and/or clipping to occur (Chapter 3).

Another is that during conversion the channels have been forced to be purely
red, green and blue. But perhaps they were not originally so, and separate channels
have been merged into the same ones. If you had started with more than three
channels, this will definitely have occurred, but even if you had fewer channels you
can have problems (like in the Cell composite.tif and Cell RGB.tif examples).

The trouble with only having an RGB image is that it is no longer possible to
know for sure what the original data looked like, to be able to figure out whether
anything has been lost. For example, perhaps you have managed to generate
a magnificent image consisting of turquoise, yellow and dazzling pink channels.
Each pixel is displayed on screen as a combination of those colours. However,
precisely the same colour for any pixel can also be represented – rather more
simply – as a mixture of red, green and blue. So no matter what channels and
colours you began with, the final result after merging can be replicated using red,
green and blue channels. But if you only have the RGB version, you might never
be able to extract the original 3 channels again. Their colours could be so mixed
together that the original pixel values would be irretrievably lost.

And so the good things about RGB images is that they look identical to the
original image you had before conversion, and other software (e.g. webbrowsers
or PowerPoint) can understand them e↵ortlessly. But the potentially very bad
thing about RGB images is that creating them requires conversion, and after this
it might very well be impossible to regain the original pixel values.

Question 4.1 Copy and Copy to System have quite distinct purposes. The
former allows you to copy part of an individual image slice (i.e. a 2D part of a
particular colour channel) and paste it into another image while exactly preserving
the original image type and pixel values. However, this image type might well not
be compatible with other software, therefore images copied in this way cannot
be accessed outside ImageJ. If you want to copy an image and paste it into
other software, you need Copy to System. This copies the image to the system
clipboard, converting it to RGB in the process, thereby preserving appearance –
but not necessarily the pixel values.
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Files & file formats

Chapter outline

• Image files consist of pixel values and metadata

• Some file formats are suitable for data to analyze, others for data
only to display

• Metadata necessary for analysis can be lost by saving in a non-
scientific file format

• Compression can be either lossless or lossy

• Original pixel values can be lost through lossy compression,
conversion to RGB, or by removing dimensions

5.1 The contents of an image file

An image file stored on computer contains two main things:

1. Image data – the pixel values (numbers, only numbers)

2. Metadata – additional information, such as dimensions, image type, bit-
depth, pixel sizes and microscope settings (‘data about data’)

The image data is clearly important. But some pieces of the metadata are essential
for the image data to be interpretable at all. And if the metadata is incorrect
or missing, measurements can also be wrong. Therefore files must be saved in
formats that preserve both the pixel values and metadata accurately if they are
to be analyzable later.

5.2 File formats

When it comes to saving files, you have a choice similar to that faced when working
with colour images: you can either save your data in a file format good for analysis
or good for display. The former requires a specialist microscopy/scientific format
that preserves the metadata, dimensions and pixels exactly. For the latter, a
general file format is probably preferable for compatibility.
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Figure 5.1: Options when opening a file using the LOCI Bioformats importer.

5.2.1 Microscopy file formats (ICS, OME-TIFF, LIF, LSM, ND2. . . )

Fortunately, much useful metadata is normally available stored within freshly-
acquired images. Unfortunately, this usually requires that the images are saved in
the particular format of the microscope or acquisition software manufacturer (e.g.
ND2 for Nikon, LIF for Leica, OIB or OIF for Olympus, LSM or ZVI for Zeiss).
And it is quite possible that other software will be unable to read that metadata
or, worse still, read it incorrectly or interpret it di↵erently.

In Fiji, the job of dealing with most proprietary file formats is given to the
LOCI Bioformats plugin1. This attempts to extract the most important metadata,
and, if you like, can display its findings for you to check. When opening a file
using Bioformats, the dialog box shown in Figure 5.1 appears first and gives some
extra options regarding how you want the image to be displayed when it is opened.

In general, Bioformats does a very good job – but it does not necessarily get
all the metadata in all formats. This is why. . .

You should always keep the originally acquired files – and refer to
the original acquisition software to confirm the metadata

The original files should be trustworthy most of the time. But it remains good
to keep a healthy sense of paranoia, since complications can still arise: perhaps
during acquisition there were values that ought to have been input manually (e.g.
the objective magnification), without which the metadata is incorrect (e.g. the
pixel size is miscalculated). This can lead to wrong information stored in the
metadata from the beginning. So it is necessary to pay close attention at an early
stage. While in many cases an accurate pixel size is the main concern, other
metadata can matter sometimes – such as if you want to estimate the blur of an
image (Chapter 15), and perhaps reduce it by deconvolution.

The messy state of metadata
Despite its importance, metadata can be annoyingly slippery and easy to lose.

1This can also be added to ImageJ, see http://loci.wisc.edu/software/bio-formats
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Figure 5.2: From http://www.xkcd.com/927/

New proprietary file formats spring up (Figure 5.2), and the specifications
for the formats might not be released by their creators, which makes it very
di�cult for other software developers to ensure the files are read properly.

One significant e↵ort to sort this out and o↵er a standardized format is being
undertaken by the Open Microscopy Environment (OME), which is often
encountered in the specific file format OME-TIFF. While such e↵orts give some
room for hope, it has not yet won universal support among software developers.

5.2.2 General file formats (JPEG, PNG, MPEG, AVI, TIFF. . . )

If you save your data in a general format, it should be readable in a lot more
software. However, there is a fairly good chance your image will be converted to
8-bit and/or RGB colour , extra dimensions will be thrown away (leaving you
with a 2D image only) and most metadata lost. The pixel values might also be
compressed – which could be an even bigger problem.

5.2.3 Compression

There are two main categories of compression: lossy and lossless.

1. Lossy compression (e.g. JPEG) saves space by ‘simplifying’ the pixel values,
and converting them into a form that can be stored more concisely. But this
loses information, since the original values cannot be perfectly reconstructed.
It may be fine for photographs if keeping the overall appearance similar is
enough, but is terrible for any application in which the exact values matter.

2. Lossless compression (e.g. PNG, BMP, most types of TIFF, some microscopy
formats) saves space by encoding the patterns in the image more e�ciently,
but in such a way that the original data can be perfectly reconstructed. No
information is lost, but the reductions in file size are usually modest.
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(a) Uncompressed image (485 KB) (b) JPEG compressed image (10.3 KB)

Figure 5.3: The e↵ect of strong JPEG compression on colour images. The reduction in
file size can be dramatic, but the changes to pixel values are irreversible. If you have
an eerie sense that something might be wrong with an image, or the file size seems too
good to be true, be sure to look closely for signs of little artificial square patterns that
indicate that it was JPEG compressed once upon a time. By contrast, saving (a) as a
PNG (which uses lossless compression) would give an image that looks identical to the
original, but with a file size of 366 KB.

(a) Uncompressed TIFF (b) Compressed JPEG (c) Subtracted TIFF (d) Subtracted JPEG

Figure 5.4: Using lossy compression can make some analysis impossible. The saved images
in (a) and (b) look similar. However, after subtracting a smoothed version of the image,
the square artifacts signifying the e↵ects of JPEG compression are clearly visible in (d),
but absent in (c). In later analysis of (b), it would be impossible to know the extent to
which you are measuring compression artifacts instead of interesting phenomena.
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Therefore lossless compression should not cause problems, but lossy compres-
sion really can. The general rule is

If in doubt, avoid compression – and really avoid JPEG

JPEG gets a special mention because it is ubiquitous, and its e↵ects can be
particularly ugly (Figure 5.3). It breaks an image up into little 8⇥ 8 blocks and
then compresses these separately. Depending upon the amount of compression,
you might be able to see these blocks clearly in the final image (Figure 5.4).

Question 5.1
Suppose you have an original image in TIFF format (no compression). First,
you save it as JPEG (lossy compression) to reduce the file size, then close it
and throw away the TIFF. Upon hearing JPEG is bad, you reopen the image
and save it as TIFF once more (no compression), throwing away the JPEG.
How does your final TIFF image look, and what is its file size? Solution

Compressed TIFFs. . . ?
The reality of file formats is slightly muddier than this brief discussion might
imply. For example, TIFF (like AVI) is really a container for data, so that a
TIFF file can store an image that has been compressed using a lossy technique
(but it usually won’t), and there is also such a thing as a lossless JPEG. So in
times of doubt it is wise to be cautious, and stick with specialized microscopy
file formats for most data. Nevertheless, when it comes to creating movies,
which should be looked at but not analyzed, lossy compression is probably
needed to get reasonable file sizes.

Additionally, you can take any file and then compress it losslessly later, e.g. by
making a ZIP archive from it. ImageJ can directly open TIFF files that have
been compressed this way. It can even write them using the File ! Save

As ! ZIP... command. This is safe, but if you want to open the image in
another program you will probably have to unzip it first.

5.2.4 Choosing a file format

Table 5.1 summarizes the characteristics of some important file formats. Personally,
I use ICS/IDS if I am moving files between analysis applications that support it,
and TIFF if I am just using ImageJ or Fiji. My favourite file format for most
display is PNG2, while I use PDF where possible for journal figures.

2If you ever email a Windows Bitmap file (BMP) to the sort of person who has a ‘favourite
file format’, they will judge you for it, and possibly curse you for the time it takes to download.
Unless, perhaps, that person was the designer of the BMP format. It is not well-compressed like
JPEG or PNG, and nor does it contain much of the useful extra information a TIFF can store.
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(a) Vector image or bitmap? (b) Enlargement of vector image (c) Enlargement of bitmap

Figure 5.5: When viewed from afar, it may be di�cult to know whether an image is a
vector or a bitmap (a) because they can sometimes look identical (although a photograph
or micrograph will always be a bitmap). However, when enlarged a vector image will
remain sharp (b), whereas a bitmap will not (c).

File formats for creating figures
Preparing figures for publication can be a bewildering process. To begin with,
it is necessary to know about two di↵erent types of image, one of which has
not been discussed here so far:

• Bitmaps. These are composed of individual pixels: e.g. photographs, or
all the microscopy images we are concerned with here.

• Vector images. These are composed of lines, curves, shapes or text. The
instructions needed to draw the image (i.e. coordinates, equations, fonts)
are stored rather than pixels, and then the image is recreated from these
instructions when necessary.

If you scale a 2D bitmap image by doubling its width and height, then it will
contain four times as many pixels. Guesses need to be made about how to fill
in the extra information properly (which is the problem of interpolation), and
the result generally looks less sharp than the original. But if you double the
size of a vector image, it is just a matter of updating the maths needed to draw
the image accordingly, and the result looks just as sharp as the original.

Vector images are therefore best for things like diagrams, histograms, plots
and charts, because they can be resized freely and still look good. Also, they
often have tiny file sizes because only a few instructions to redraw the image
need to be kept, whereas a huge number of pixels might be required to store
su�ciently nice, sharp text in a bitmap. But bitmaps are needed for images
formed from detecting light, which cannot be reduced to a few simple equations
and instructions.
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Finally, some versatile file formats, such as PDF or EPS, can store both kinds
of image: perhaps a bitmap with some text annotations on top. If you are
including text or diagrams, these formats are generally best. But if you only
have bitmaps without annotations of any kind, then TIFF is probably the most
common file format for creating figures.

5.3 Dealing with large datasets

Large datasets are always troublesome, and we will not be considering datasets of
tens or hundreds of gigabytes here. But when a file’s size is lurking beyond the
boundary of what your computer can comfortably handle, one trick for dealing
with this is to use a virtual stack.

Chapter 2 mentioned the (in practice often ignored) distinction between stacks
and hyperstacks. Virtual stacks are a whole other idea. These provide a way
to browse through large stacks or hyperstacks without needing to first read all
the data into the computer’s memory. Rather, only the currently-displayed 2D
image slice is shown. After moving the slider to look at a di↵erent time point,
for example, the required image slice is read from its location on the hard disk
at that moment. The major advantage of this is that it allows the contents of
huge files to be checked relatively quickly, and it makes it possible to peek into
datasets that are too large to be opened completely.

The disadvantage is that ImageJ can appear less responsive when browsing
through a virtual stack because of the additional time required to access an image
on the hard disk. Also, be aware that if you process an image that is part of a
virtual stack, the processing will be lost when you move to view another part of
the dataset!

Virtual stacks are set up either by File ! Import ! TIFF Virtual

Stack... or choosing the appropriate checkbox when the LOCI Bioformats
plugin is used to open an image (see Figure 5.1).

Question 5.2
Virtual stacks are one way to avoid out-of-memory errors when dealing with
large datasets. But assuming that you can open an image completely in the
normal way, what other ways might you be able to reduce memory requirements
during analysis?

Note: You can base your answer here upon exploring ImageJ’s menus, or
experience in using other software. Some methods involve a loss of information,
but this might be acceptable, depending on the application. Solution
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Format Comments

ICS/IDS A quite simple format designed for microscopy images, in which
the metadata is stored in a text file (.ics) and the image data in
a separate file (.ids). Both files should always be kept together
in the same directory. The big advantage of this is that all the
metadata can be read – and even edited – simply by opening it
in a text editor (e.g. Wordpad on Windows, TextEdit on a Mac).
Not everything may be stored in the metadata, but at least you
can always know precisely what is.

ICS2 Similar to ICS/IDS, but the text and image data are stored in
the same file (.ics). While avoiding the need to keep two files
together, this loses the main advantage of being able to easily read
the metadata in a text editor.

TIFF ImageJ’s default format for saving. Can be read by some other
software, but the metadata might not be correctly understood.

OME-TIFF The product of an ongoing attempt to standardize the
storage of microscopy images and metadata. See http://www.

openmicroscopy.org/

JPEG General, compressed image format for single-channel or RGB colour
images. Good for photos, bad for science.

PNG Suitable for the same types of images as JPEG, but always using
lossless compression. Good for presentations, websites and was
used for most figures in this very document.

TIFF The kind of TIFFs written by software like Photoshop are
appropriate for journal figures containing bitmaps. The file size
might be larger than for the equivalent PNG.

PDF A handy format for incorporating both bitmap images and vector
annotations. But take care with the bitmaps, which may or may
not be lossily compressed. PDFs usually look the same no matter
which computer is displaying them. Good for journal figures.

AVI Only for showing movies – especially on Windows, but should work
on other computers. ImageJ can cope best with uncompressed
AVIs. If trying to decipher a file made by some uncommon format,
you can try the free (Windows) software VirtualDub (http://www.
virtualdub.org/) to convert it. Handbrake (http://handbrake.
fr/) is alternative free software for converting movies into di↵erent
formats, and is available for Windows, Mac and Linux.

Quicktime (MOV) Better supported than AVI on the Mac, but might not work on
Windows unless Quicktime is installed.

Table 5.1: Some personal thoughts on file formats.
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Practical 5.1
To get a feel for the importance of metadata, you can try opening an image in
which it is completely absent. This is quite tricky, and requires some detective
work (or some luck).

Try to open the file Besenfreunde.ids using Fiji – it depicts an odd, and as
yet unexplained, scene that I passed on my way to work soon after arriving
in Heidelberg. This file only contains pixel values, and no metadata. It can
still be read using the File ! Import ! Raw... command, but to do so
you will need to figure out the necessary metadata and input the appropriate
values.

The following points may help:

• The file contains only a single image, and a single channel.

• The dimensions (width and height) of the image are each a multiple of
100 pixels.

• The data is in 8, 16 or 32-bit format (signed or unsigned).

• There are no o↵sets or gaps included.

• The total size of the file is 400 000 bytes.

Note: The option Little-endian byte order relates to whether the bytes of
16 or 32-bit images are arranged from the least-to-most significant, or most-to-
least significant. Some types of computer prefer one order, some prefer another,
so this is something else the metadata should contain. The di↵erence is similar
to how a perfectly respectable number like twenty-three is (quite ludicrously)
spoken as three-and-twenty in German. Solution
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Solutions

Question 5.1 The final image will look exactly like the JPEG version, but with
the same file size as the original TIFF. As such, it has ‘the worst of both worlds’.

Question 5.2 Here are some suggestions for working with large files, not all of
which would be appropriate in all circumstances:

1. Decrease the image bit-depth (often a bad idea, but possibly ok if exact
pixel values are not so important)

2. Crop the image (using the LOCI Bioformats plugin, this can be done as the
file is being opened; otherwise, see Image ! Crop)

3. Separate channels and process each independently (see Image ! Color !
Split Channels)

4. Resize (i.e. scale down) the image (see Image ! Scale...)

Practical 5.1 The file size gives you the

File size (in bytes) =
width⇥ height⇥ bit-depth

8

where the division by 8 converts the total number of bits to bytes (since 8 bits
make 1 byte). This can be used to make reasonable starting estimates for the
width, height and bit-depth, but figuring out which are correct likely still requires
some trial-and-error. In the end, the settings you need are:

• Image type: 16-bit unsigned

• Width: 500 pixels

• Height: 400 pixels

• Little-endian byte order: False

Now make sure never to lose your metadata, and you do not need to solve such
puzzles often in real life. (Also, any explanations for what exactly was going on
in that scene would be welcome.)



Part II

Processing fundamentals
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Overview: Processing & Analysis

Chapter outline

• Image analysis usually consists of three main stages: preprocess-
ing, detection & measurement

• The same basic techniques reoccur in most analysis, with their
combinations & parameters tailored to the particular task

6.1 The goal of analysis

Successfully extracting useful information from fluorescence images usually requires
triumphing in two main battles. The first is to overcome limitations in image
quality and make the really interesting image content more clearly visible. This
involves image processing, the output of which is another image. The second
battle is to compute meaningful measurements. This is image analysis. Except
when creating beautiful figures, the ultimate goal we are most interested in here
is analysis – but processing is almost always indispensable to get us there.

One way to approach image analysis is to see it like a puzzle. In the end, one
hopes to extract some kind of quantitative measurements that are justified by the
nature of the experiment and the facts of image formation, but there is no fixed
way to go about that. This liberating realization suggests there is room for lateral
thinking and sparks of creativity. Admittedly, if no solution comes to mind after
pondering for a while then such an optimistic outlook quickly subsides and the
‘puzzle’ may very well turn into an unbearably infuriating ‘problem’ – but the
point here is that in principle image analysis can be enjoyable. All it takes is
properly-acquired data, a modicum of enthusiasm, and the good luck not to be
working on something horrendously di�cult.

Despite the diversity of algorithms1 that could be constructed to analyze an
image, in practice they generally tend to be built up from the following three
stages:

1. (Pre)processing, e.g. subtract the background, use a filter to reduce noise

2. Detection, e.g. apply a threshold to locate interesting features, refine the
detection

1An ‘algorithm’ can be considered to be simply a ‘sequence of steps’.
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(a) Original image (b) Extract channel (c) Apply filters

(d) Apply threshold (e) Refine detection (f) Relate (e) to (b) (g) Measure

Figure 6.1: An simple image analysis workflow for detecting and measuring small spots,
applied to the red channel of the sample image HeLa Cells.

3. Measurement, e.g. count pixels to determine areas or volumes, quantify
intensities

Figure 6.1 shows an example of how these can fit together.
This part provides a tour of many of the fundamental techniques that may

be used for each of the three stages. Armed with only these techniques, a vast
amount is already achievable: the challenge is to figure out how to string them
together for whatever application you encounter. But even if you ultimately end
up doing your analysis with someone else’s automated software or plugin, knowing
the main building blocks of image processing and analysis can still help explain
what the algorithm you use is really doing and why.

The following chapters deal primarily with 2D images. Chapter 12 then
briefly discusses how the techniques can be extended into more dimensions, before
Chapter 13 provides an introduction to writing macros, which can be used to
automate all or part of an analysis workflow.
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Measurements & regions of interest

Chapter outline

• Regions of Interest (ROIs) can be manually drawn and measured

• The accuracy of measurements will depend upon the Image
Properties being correct

• Multiple ROIs can be added to the ROI Manager or an overlay

• ROIs can be inverted or combined to give more complex shapes

7.1 Measuring images

The main command for measuring in ImageJ is found under Analyze ! Measure

(or just press M), where Analyze ! Set Measurements... determines what
measurements are actually made. Possibilities include areas, perimeters, lengths,
and minimum, maximum and mean pixel intensities (here referred to as ‘gray
values’), as well as further measurements of shapes or intensities (Figure 7.1b).

(a) Image (b) Set measurements dialog

(c) Results table

Figure 7.1: Measurements made on an image are added to a results table. The choice of
measurements to make can be changed using the Set Measurements... command.
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By default, measurements are made over the entire area of the currently-selected
2D image slice, and added to a results table (Figure 7.1c).

Important!
Size measurements are automatically scaled according to the pixel
sizes in Image ! Image Properties..., so these must be correct!

Results tables & identity crises

A small idiosyncrasy to be aware of is that, as
far as ImageJ is concerned, there is only ever
one ‘o�cial’ results table – the one with the title
Results. Di↵erent, similar-looking tables can
be produced (perhaps by duplicating the o�cial
table, or internally by some other command),
but any new measurements you make with the
Measure command will only be added to the
o�cial table. The o�cial table also has an extra
Results entry in its menu bar.

New measurements will be
added here

New measurements will not be

added here

Caution with measurements
Set Measurements... deserves your close attention! Because all new
measurements are added to the same results table, when working with multiple
images it can be hard to remember which measurement refers to which
image. It is therefore a very good idea to choose Display label under Set
Measurements..., to ensure the image title is included in the table. When
working with higher dimensions, choosing Stack Position lets you know which
2D slice of the entire dataset has been measured.

Also, for now, make sure that Redirect to is set to None. This is normally
what you want, to avoid merrily measuring the wrong image by accident (see
Chapter 9).

7.2 Regions Of Interest

Usually we want to measure something within an image and not the whole thing.
Regions Of Interest (ROIs) can be used to define specific parts of an image that
should be processed independently or measured, and so only pixels within any
ROI we draw will be included in the calculations when we run Measure.

ROIs of di↵erent types (e.g. rectangles, circles, lines, points, polygons, freehand
shapes) can be drawn using the commands in the tool bar (Figure 7.2), and are
invariably 2D. Right-clicking the tools often provides access to related tools, while
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(a) Tool bar (b) Image + ROI

Figure 7.2: ROI drawing tools are found on the left side of the ImageJ tool bar (a). The
ROI in (b) was created by drawing one rectangular and two circular ROIs, holding down
the Shift key between each so that the regions were combined.

double-clicking may give additional options. When drawing a ROI, pressing Shift
or Control before releasing the mouse button adds the ROI being drawn to any
existing ROI already present.

Some extra commands to create or adjust ROIs appear under the Edit !
Selection submenu , which we will make more use of later.

Measurement accuracy
Although ImageJ can measure very exactly whatever regions it is told to
measure within an image, keep in mind that in light microscopy images any
size measurements will not exactly correspond to sizes of structures in real life.
This is especially true at very small scales (hundreds of nanometres or smaller),
for blur-related reasons that will be described in Chapter 15.

7.3 Working with multiple regions

Normally, only a single ROI can be ‘active’ (i.e. a↵ecting measurements) at any
one time. If you need control over multiple ROIs, there are two places in which
you can store them, di↵ering according to purpose:

1. The ROI Manager: for most ROIs that you want to be able to edit and use
for measurements

2. The image overlay: for ROIs that you only want to display

7.3.1 The ROI Manager

The ROI Manager provides a convenient way to store multiple ROIs in a list,
allowing you to easily access, edit and measure them. The slow way to open it is
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to choose Analyze ! Tools ! ROI Manager.... The fast way is just to draw
a ROI and press T1. The additional Measure command within the manager is
then like applying Analyze ! Measure to each ROI in turn. If you happen to
want to show all the ROIs simultaneously, you can select the Show All option2.

Because ROIs in the ROI Manager are represented independently of the image
on which they were defined, you can create a ROI on one image, add it to the ROI
manager, select a di↵erent image and then click on the ROI in the ROI Manager
to place it on the second image . Measurements made from the ROI Manager
always use the most recently-selected image, so be careful if you have several
images open at the same time.Transferring ROIs

A faster way to
transfer ROIs
between images
without using the
ROI Manager is to
click on the second
image and press
Shift + E (the

shortcut for Edit !
Selection !

Restore Selection)

Expert ROI manipulation with the ROI Manager
Using the ROI Manager, you can craft your ROIs into more complex shapes,
adding or removing other ROIs. First, add the main ROIs you want to work
with to the manager. Then select them, and choose from among the options:

• AND – create a ROI containing only the regions where the selected ROIs
overlap

• OR – create a single ROI composed by combining all the selected ROIs

• XOR – create a single ROI containing all the selected ROIs, except the
places where they overlap (‘eXclusive OR’)

7.3.2 Overlays
Adjusting
overlays

You can ‘reactivate’
a ROI on an overlay
by clicking it with
the Alt key pressed
(provided a suitable
ROI tool is selected).

Overlays also contain a list of ROIs that are shown simultaneously on the image,
but which do not a↵ect the Measure command. They are therefore suitable for
storing annotations. You can think of them as existing on their own separate
layer, so that adding and removing the overlay does not mess up the underlying
pixel values (Figure 7.3). The relevant commands are found in the Image !
Overlay submenu, where you can get started by drawing a ROI and choosing
Add Selection (or simply press B3). The same submenu also provides commands
to transfer ROIs between the overlay and the ROI Manager.

7.3.3 Saving ROIs

Individual ROIs can be saved simply by choosing File ! Save As ! Selection...

The ROI Manager itself has a Save... command (under More), which will save
whichever ROIs are currently selected (or, if none are selected, all of them).
Overlays are fixed to specific images and do not have their own special save

1Easily memorable as ‘Take this ROI and add it to the ROI Manager’. Or ‘T roy Manager’.
2If you have a stack, you also may need to explore More >> Options... to define whether

all ROIs are shown on all slices, or only on the slices on which they were first created.
3For ‘Boverlay’.
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Figure 7.3: ROIs and overlays are displayed on top of images, and so can be removed
easily without having any e↵ect upon the pixel values. Flattened images may appear the
same on screen, but are invariably RGB (see Chapter 4) and have had their pixel values
permanently changed to show any annotations.

command, but will nonetheless be included if you save the image as a TIFF file
(ImageJ’s default format). Any currently-active ROI will also be saved in a TIFF.

This is fine if you work only in ImageJ or Fiji, but unfortunately if you try to
view your ROIs in other software it is highly unlikely to work properly, since the
format is specific to ImageJ. The way around this is to use the Image ! Overlay

! Flatten command . This creates an RGB copy of the image in which the
pixel values have been changed so that any ROIs or overlays will appear whenever
you open the image elsewhere. Therefore you may well want to use this command
when creating figures or presentations, but you do not want to subsequently apply
your analysis to the image you have flattened – always use the original instead.
We will return to this topic in Chapter 4.

Practical 7.1
Open the images Annotated Cyclists 1.tif and Annotated Cyclists 2.tif,
which depict the 3 main cyclist characteristics I found most disconcerting as a
pedestrian in Heidelberg.

The images should initially look the same,
but in one the text is an overlay, while in the
other the image has been flattened. Which
is which? Try to think of several ways to
investigate this.

Solution

Practical 7.2
Using the cyclist image containing the overlay from the previous practical,
rearrange the annotations so that they are each positioned next to di↵erent
cyclists. You could do this by deleting the overlay and starting again, but there
are other, faster possibilities (using a technique mentioned before, or the Image
! Overlay ! To ROI Manager command). Solution
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Solutions

Practical 7.1 Annotated Cyclists 1.tif is the one with the overlay.
Five ways to determine whether an annotation is an overlay or not:

1. Zoom in very closely to the region containing the annotation. If it becomes
‘blocky’, i.e. made up of pixels, it is not an overlay. If it remains smooth,
then it is.

2. Move your cursor over the region where the annotation appears, and look
at the pixel values. If the values are all the same where the annotation is
present, but di↵erent elsewhere, then it is unlikely to be an overlay.

3. Using the paintbrush or pencil tool from the toolbar, try putting some other
colour where the annotation appears. If the annotation remains visible on
top of where you drew, it must be an overlay.

4. Choose Image ! Overlay ! Hide Overlay and see if the annotation
disappears.

5. Choose Image ! Overlay ! To ROI Manager and see if anything hap-
pens at all.

Practical 7.2 Old solution (when I wrote this question): Once the ROIs are
in the ROI Manager, you can click on each and then move it. However, the
original ROI will still stay in the manager – so after moving, you need to add the
newly-positioned ROI to the manager, and delete the old one again.

Solution since ImageJ v1.46m: Click the annotation while holding down the
Alt key, to bring it to life so it can be moved around again. This only works
if certain tools are selected, e.g. Rectangle or Text, because some others have
more overriding functions, such as zooming in or scrolling.
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Manipulating individual pixels

Chapter outline

• Point operations are mathematical operations applied to individual
pixel values

• They can be applied using a single image, an image and a constant,
or two images of the same size

• Some point operations improve image appearance by changing the
relationships between pixel values

8.1 Introduction

A step used to process an image in some way is called an operation, and the
simplest examples are point operations. These act on individual pixels, changing
each in a way that depends upon its own value, but not upon where it is or the
values of other pixels. While not immediately very glamorous, point operations
often have indispensable roles in more interesting contexts – and so it is essential
to know where to find them and how they are used.

8.2 Point operations using a single image

8.2.1 Arithmetic
Uses of point
operations:
Subtracting a

background constant,
normalizing to an
exposure time,

scaling for bit-depth
conversion, adjusting

contrast. . .

The Process ! Math submenu is full of useful things to do with pixel values.
At the top of the list come the arithmetic operations: Add..., Subtract...,
Multiply... and Divide.... These might be used to subtract background
(extremely important when quantifying intensities; see Chapter 18) or scale the
pixels of di↵erent images into similar ranges (e.g. if the exposure time for one
image was twice that of the other, the pixel values should be divided by two to
make them more comparable) – and ought to mostly behave as you expect.

Question 8.1
Suppose you add a constant to every pixel in the image. Why might subtracting
the same constant from the result not give you back the image you started
with? Solution

59
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(a) Original image (b) Inverted image

(c) Inverted LUT (d) Inverted image + inverted LUT

Figure 8.1: The e↵ect of image and LUT inversion on a depiction of two young lovers,
spotted on Gaisbergstraße displaying the virtues of invention and tolerance.

8.2.2 Image inversion
Why is inversion

useful?
Suppose you have a

good strategy
designed to detect

bright structures, but
your images contain

dark structures.
Simply invert your

images first, then the
structures become

bright.

Inverting an image (Edit ! Invert) e↵ectively involves ‘flipping’ the intensities:
making the higher values lower, and the lower values higher. In the case of 8-bit
images, inverted pixel values can be easily computed simply by subtracting the
original values from the maximum possible – i.e. from 255. Although this would
work in principle for 16-bit images as well, it could have the slightly uncomfortable
e↵ect of making an image containing only small values suddenly now only contain
huge ones.

Practical 8.1
Edit ! Invert works di↵erently when applied to di↵erent image types. Like
in the 8-bit case, pixel values are always subtracted from some ‘maximum’ –
your challenge is to work out how this maximum is determined for 16 and
32-bit images in ImageJ.

(Note that the methods used for 16 and 32-bit images are not even the same as
one another.) Solution
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(a) Original (linear) (b) Log (c) Gamma = 0.5 (d) Gamma = 2.0

Figure 8.2: Nonlinear transforms applied to a simple ‘ramp’ image, consisting of linearly
increasing pixel values. Replacing each pixel with its log or gamma-adjusted value has
the e↵ect of compressing either the lower or higher intensities closer together to free up
more gray levels for the others.

Inverting LUTs
Beware! You can also invert the colours used for display with Image ! Lookup

Tables ! Invert LUT – which looks the same as if the image is inverted, but
does not change the pixel values (Figure 8.1)!

Moreover, whether the LUT is inverted is saved inside TIFF files – and so
you could potentially open an image and find its LUT was inverted before
you even started to do anything, and thereby misjudge whether structures are
really brighter or darker than everything else. See File ! Open Samples !
Blobs for an example of this.

8.2.3 Nonlinear contrast enhancement

With arithmetic operations we change the pixel values, usefully or otherwise, but
(assuming we have not fallen into the trap alluded to in a previous question) we
have done so in a linear way. At most it would take another multiplication and/or
addition to get us back to where we were. Because a similar relationship between
pixel values exists, we could also adjust the Brightness/Contrast... so that it
does not look like we have done anything at all.

Nonlinear point operations di↵er in that they a↵ect relative values di↵erently
depending upon what they were in the first place (Figure 8.2). This turns out
to be very useful for displaying images with high dynamic ranges – that is, a big
di↵erence between the largest and smallest pixel values (e.g. Figure 8.3). Using
the Brightness/Contrast... tool (which assigns LUT colours linearly to all the
pixel values between the minimum and maximum chosen) it might not be possible
to find settings that assign enough di↵erent colours to the brightest and darkest
regions simultaneously for all the interesting details to be made visible.

The Gamma... or Log... commands within the Process ! Math submenu
o↵er one type of solution. The former means that every pixel with a value p is
replaced by p

� , where � is some constant of your choosing. The latter simply
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(a) Original image (b) Linear contrast

(c) Gamma adjusted (d) Log transform

Figure 8.3: The application of nonlinear contrast enhancement to an image with a wide
range of values. (Top row) In the original image, it is not possible to see details in
both the foreground and background simultaneously. (Bottom row) Several examples of
nonlinear techniques that make details visible throughout the image.

replaces pixel values with their natural logarithm. Examples of these are shown
in Figure 8.3. Some extra (linear) rescaling is applied internally by ImageJ when
using gamma and log commands, since otherwise the resulting values might fall
out of the range supported by the bit-depth.

Practical 8.2
Explore the use of the nonlinear transforms in the ImageJ submenu Process !
Math for enhancing the contrast of any image (possibly Spooked 16-bit.tif).
In particular, notice how the e↵ects change depending upon whether gamma < 1
or not.

Important!
When creating figures for publication, changing the contrast in some linear
manner – i.e. just by scaling using the Brightness/Contrast... tool – is
normally considered fine (assuming that it has not been done mischievously to
make some inconvenient, research-undermining details impossible to discern).
But if any nonlinear operations are used, these should always be noted in
the figure legend! This is because although nonlinear operations can be very
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helpful when used with care, they can also easily mislead – exaggerating or
underplaying di↵erences in brightness.

8.3 Point operations involving multiple images
Uses of the image

calculator
Subtracting varying

backgrounds,
comparing images,
intensity ratios,
masking out
regions. . .

Instead of applying arithmetic using an image and a constant, we could also use
two images of the same size. These can readily be added, subtracted, multiplied
or divided by applying the operations to the corresponding pixels.

The command to do this is found under Process ! Image Calculator....
But beware of the bit-depth! If any of the original images are 8 or 16-bit, then the
result might require clipping or rounding, in which case selecting the option to
create a 32-bit (float) result may be necessary to get the expected output.

Question 8.2
In the two 32-bit images shown here, white
pixels have values of one and black pixels
have values of zero (gray pixels have values
somewhere in between).
What would be the result of multiplying the
images together? And what would be the result
of dividing the left image by the right image?

Solution

Practical 8.3
With the help of the Image Calculator, confirm which two of the images
Same 1.tif, Same 2.tif and Same 3.tif are identical in terms of pixel values,
and which is di↵erent. Solution

Modelling image formation: Adding noise
Fluorescence images are invariably noisy. The noise appears as a graininess
throughout the image, which can be seen as arising from a random noise value
(positive or negative) being added to every pixel. This is equivalent to adding
a separate ‘noise image’ to the non-existent cleaner image that we would prefer
to have recorded. If we knew the pixels in the noise image then we could simply
subtract it to get the clean result – but, in practice, their randomness means
that we do not.
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Nevertheless, even the idea of a noise image being added is extremely useful.
We can use it to create simulations in which the noise behaves statistically just
like real noise, and add it to clean images. Using these simulations we can
figure out things like how processing steps or changes during acquisition will
a↵ect or reduce the noise, or how sensitive our measurement strategies are to
changes in image quality (Chapter 10, 16 and 18).
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Solutions

Question 8.1 If you add a constant that pushes pixel values outside the range
supported by the bit-depth (e.g. 0–255 for 8-bit), then the result is clipped to
the closest possible value. Subtracting the constant again does not restore the
original value. Note that this is less likely to occur with a 32-bit image.

Practical 8.1 At the time of writing, to invert a 16-bit image, pixel are
subtracted from the maximum value within the original image. This is also
true for stacks: the maximum value in the entire stack is found.

For 32-bit image inversion, the pixels are subtracted from the display maximum,
i.e. whatever maximum is set in the Brightness/Contrast... dialog box.
Consequently, inverting a 32-bit image can give di↵erent results each time it is
applied if the contrast settings are not kept the same!

One way to improve predictability when inverting a 32-bit image is simply to
multiply each pixel by -1 instead of using the Invert command – although this
would not be a good strategy for 8 or 16-bit images.

Question 8.2 Multiplying the images e↵ectively results in everything outside
the white region in the right image being removed from the left image (i.e. set to
zero).

Dividing has a similar e↵ect, except that instead of becoming zero the masked-
out pixels will take one of three results, depending upon the original pixel’s value
in the left image:

• if it was positive, the result is +1

• if it was negative, the result is �1

• if it was zero, the result is NaN (‘not a number’ – indicating 0/0 is undefined)

These are special values that can be contained in floating point images, but not
images with integer types.
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Practical 8.3 My preferred way to check this is to subtract the images from
one another, making sure that the result is 32-bit (in case there are negative
values). Doing this should reveal something hidden in the image Same 2.tif.
Note that the contrast settings di↵er between Same 1.tif and Same 3.tif, so
they may look di↵erent.

(Note that the calculator’s Difference or Divide commands could also be
used. XOR would work as well, but its output is harder to interpret since it involves
comparing individual bits used to store each pixel value and gives an output where
all matching bits are 0 and all non-matching bits are 1. When converted back
into actual decimal values and then to colours for us to look at, this can appear
strange. But at least if the resulting image is not completely black then we know
that the original input images were not identical.)
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Detection by thresholding

Chapter outline

• The process of detecting interesting objects in an image is called
segmentation, and the result is often a binary or labeled image

• Global thresholding identifies pixels with values in particular
ranges

• Thresholds can be calculated from image histograms

• Combining thresholding with filtering & image subtraction make
it suitable for a wide range of images

• Binary images can be used to create ROIs or other object
representations

9.1 Introduction

Chapter 7 described how measurements can be made using manually-drawn ROIs.
This may be fine in simple cases where there are not too many things to analyze,
but it is preferable to find ways to automate the process of defining regions – not
only because this is likely to be faster, but because it should give more reproducible
and less biased results.

9.1.1 Objects, segmentation, binary & labeled images

In image processing literature, interesting image structures are frequently called
objects (or sometimes connected components), and the often troublesome process
of detecting them is image segmentation. Most of the techniques described in
the following chapters can be strung together in an e↵ort to segment an image
accurately. If successful, the result may be a binary image, in which each pixel
can only have one of two values to indicate whether it is part of an object or
not, or a labeled image, in which all pixels that are part of the same object have
the same, unique value. It is common to concentrate first on producing a binary
image, and then create a labeled image only if necessary by identifying distinct
clusters of object pixels and assigning the labels to these.

67
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Binary images in ImageJ
Although only one 1 bit is really needed for each pixel in a binary image,
the implementation in ImageJ currently uses 8-bits – and so the actual pixel
values allowed are 0 and 255. To complicate matters, ImageJ also permits
either of these to represent the foreground, with the choice hidden away under
Process ! Binary ! Options..., and 0 taken to be ‘black’ and 255 ‘white’.
Personally, I prefer for white to represent the foreground (i.e. the interesting
things we have detected), and so I will assume that the Black background

option has been checked.

Nevertheless, you should be aware that this convention is not adopted
universally. Furthermore, if you choose Invert LUT then the colours are
flipped anyway – so yet more confusion arises. Therefore if you find that any
processing of binary images gives odd results, be sure to check the binary
options and LUT status.

9.2 Global thresholding

The usual way to generate a binary image is by thresholding : identifying pixels
above or below a particular threshold value. In ImageJ, the Image ! Adjust !
Threshold... command allows you to define both low and high threshold values,
so that only pixels falling within a specified range are found. After choosing
suitable thresholds, pressing Apply produces the binary image1. Because the same
thresholds are applied to every pixel in the entire image, this is an example of
global thresholding – which is really a kind of point operation, since the output
for any pixel depends only on pixel’s original value and nothing else.

9.2.1 Choosing your results with manual thresholds

The puzzle of global thresholding is how to define the thresholds sensibly. If you
open File ! Open Samples ! HeLa Cells and split the channels (Image !
Color ! Split Channels), you can use Threshold... to interactively try out
di↵erent possibilities for each channel. You should soon notice the danger in this:
the results (especially in the red or green channels) can be very sensitive to the
threshold you choose. Low thresholds tend to detect more structures, and also to
make them bigger – until the point at which the structures merge, and then there
are fewer detections again (Figure 9.1).

In other words, you can sometimes use manual thresholds to get more or less
whatever result you want – which could completely alter the interpretation of
the data. For the upstanding scientist who finds this situation disconcerting,
ImageJ therefore o↵ers a number of automated threshold determination methods

1Since in ImageJ this replaces the original image, you might want to duplicate it first.
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(a) Image (b) Low threshold (c) High threshold

Figure 9.1: Applying manually-chosen thresholds to the red channel of HeLa Cells (a).
In (b), a relatively low threshold results in 124 spots being detected with an average area
of 32.9 pixels2 – but in some places these look like several spots merged. Choosing a
higher threshold to avoid merging leads to 74 detections in (c), with an average size of
20.3 pixels2.

(a) Image (b) Histogram (c) Triangle threshold (d) Otsu’s threshold

Figure 9.2: Automated thresholding to detect nuclei. (a) Detail from the blue channel of
HeLa Cells. (b) In the image histogram you can see one large peak corresponding to the
background, and a much longer, shallower peak corresponding to the nuclei. The arrow
marks the trough between these two peaks. From inspecting the histogram, one would
expect that a threshold anywhere in the range 380-480 could adequately separate the two
classes. The triangle method yields a suitable threshold of 395 (c), while Otsu’s method
gives 762, making it inappropriate for this particular data (d).

in a drop-down list in the Threshold... tool. These are described at http://
fiji.sc/wiki/index.php/Auto_Threshold, often with references to the original
published papers upon which they are based. Fiji’s Image ! Adjust ! Auto

Threshold command provides additional options, including the ability to apply
all the thresholds and see which one appears to provide the best results.

9.2.2 Determining thresholds from histograms

There is no always-applicable strategy to determine a threshold; images vary too
much. However, by its nature, thresholding assumes that there are two classes of
pixel in the image – those that belong to interesting objects, and those that do not
– and pixels in each class have di↵erent intensity values2. Whenever values are

2Of course there may be multiple classes for di↵erent kinds of objects, and perhaps multiple
thresholds would make more sense. However, in such cases it may be possible to apply steps
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(a) Image (b) Histogram (c) Triangle threshold (d) Otsu’s threshold

Figure 9.3: Automated thresholding of less distinct classes. (a) Detail from the green
channel of HeLa Cells. (b) The background peak is still visible in the histogram, but
merges without an obvious trough into the foreground. The triangle method here gives
a much lower threshold than Otsu’s method (461 rather than 615), although which is
preferable may depend on the application (c)-(d).

significant, but their exact location in the image is either unknown or unimportant,
this information is neatly summarized within the image’s histogram. Therefore
ImageJ’s methods to find thresholds do not work on the images directly, but
rather on their histograms – which is considerably simpler.

A justification for this can be seen in Figure 9.2. Looking at the image, the
two nuclei are obvious: they clearly have higher values than the background (a).
However, looking at the histogram alone (b) we could already have inferred that
there was a class of background pixels (the tall peak on the left) and a class of
‘other’, clearly distinct pixels (the much shallower peak on the right). By choosing
a threshold between these two peaks – somewhere around 400 – the nuclei can be
cleanly separated (c). Choosing a threshold much higher or lower than this yields
less impressive results (d).

Figure 9.3 gives a more challenging example. In the image itself the structures
are not very clearly defined, and in many cases it is not obvious whether we
would want to consider any particular pixel as ‘bright enough’ for detection or not
(a). The histogram also depicts this uncertainty; there is a smoother transition
between the background peak and the foreground (b). The results of applying two
di↵erent automated thresholds are shown, (c) and (d). Both are in some sense
justifiable, and deciding which is the most appropriate would require a deeper
understanding of what the image contains and what is to be analyzed.

Automated thresholding and data clipping
If the data is clipped (Section 3.3), then the statistics calculated from the
histogram are a↵ected – and the theory underlying why an automated threshold
should work might no longer apply. This is another reason why clipping should
always be avoided!

such as filtering to remove some of the more confusing information, and reduce the detection
problem to that of separating only two classes. Therefore although thresholding is not always
appropriate and di↵erent methods of detection can be needed for complex problems, it is still
useful a lot of the time.
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(a) Noisy image (b) Histogram of (a) (c) Threshold applied to (a)

(d) Gaussian filtered image (e) Histogram of (d) (f) Threshold applied to (d)

Figure 9.4: Noise can a↵ect thresholding. After the addition of simulated noise to
the image in Figure 9.2a, the distinction between nulcei and non-nuclei pixels is much
harder to identify in the histogram (b). Any threshold would result in a large number of
incorrectly-identified pixels. However, applying a Gaussian filter (here, sigma = 2) to
reduce noise can dramatically improve the situation (e). Thresholds in (c) and (f) were
computed using the triangle method.

9.3 Thresholding di�cult data

Applying global thresholds is all well and good in easy images for which a
threshold clearly exists, but in practice things are rarely so straightforward – and
often no threshold, manual or automatic, produces useable results. This section
anticipates the next chapter on filters by showing that, with some extra processing,
thresholding can be redeemed even if it initially seems to perform badly.

9.3.1 Thresholding noisy data

Noise is one problem that a↵ects thresholds, especially in live cell imaging. The
top half of Figure 9.4 reproduces the nuclei from Figure 9.2, but with extra noise
added to simulate less than ideal imaging conditions. Although the nuclei are
still clearly visible in the image (a), the two classes of pixel previously easy to
separate in the histogram have now merged together (b). The triangle threshold
method, which had performed well before, now gives less attractive results (c),
because the noise has caused the ranges of background and nuclei pixels to overlap.
However, applying a Gaussian filter smooths the image, thereby reducing much of
the random noise (Chapter 10), which results in a histogram dramatically more
similar to that in the original, (almost) noise-free image, and the threshold is
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(a) Original image (b) Otsu’s threshold (c) Triangle threshold

(d) Median filtered image (e) Result of (a)-(d) (f) Triangle threshold of (e)

Figure 9.5: Thresholding to detect structures appearing on a varying background. No
global threshold may be su�ciently selective (top row). However if a ‘background image’
can be created, e.g. by median filtering, and then subtracted, a single threshold can give
better results (bottom row). This is equivalent to applying a varying threshold to the
original image.

again quite successful (f).

9.3.2 Local thresholding

Another common problem is that structures that should be detected appear on
top of a background that itself varies in brightness. For example, in the red
channel of HeLa cells there is no single global threshold capable of identifying
and separating all the ‘spot-like’ structures; any choice will miss many of the spots
because a threshold high enough to avoid the background will also be too high to
catch all the spots occurring in the darker regions (Figure 9.5a–c).

In such cases it would be better if we could define di↵erent thresholds for
di↵erent parts of the image: a local threshold. A few methods to do this are imple-
mented in Fiji’s Image ! Adjust ! Auto Local Threshold, and described at
http://fiji.sc/wiki/index.php/Auto_Local_Threshold. However, if these
are insu�cient it is easy to implement our own local thresholding and get more
control over the result if we think of the problem from a slightly di↵erent angle.
Suppose we had a second image that contained values equal to the thresholds
want to apply, and which could be di↵erent for every pixel. If we simply subtract
this second image from the first, we can then apply a global threshold to detect
what we want.
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The di�cult part is creating the second image, but again filters come in useful.
One option is a median filter (Section 10.3.1), which e↵ectively moves through
every pixel in the image, ranks the nearby pixels in order of value, and chooses the
middle one – thereby removing anything much brighter or much darker than its
surroundings (d). Subtracting the median-filtered image from the original gives a
result to which a global threshold can be usefully applied (e).

Alternative background subtraction
ImageJ already has a Process ! Subtract Background... command that
does something similar to the above, but in which the background is determined
using the ‘rolling ball algorithm’. This command is described in more detail
upon pressing its Help button, and it supports previewing the background so
that you can check it is doing something appropriate.

Practical 9.1
Explore several automated methods of thresholding the di↵erent channels of
File ! Open Samples ! HeLa Cells, using Subtract Background... if
necessary.

9.4 Practicalities: bit-depths & types

9.4.1 Using NaNs

Although not obviously integral to the idea of thresholding, bit-depths and image
types are relevant in two main ways. The first appears when you click Apply in
the Threshold... dialog box for a 32-bit image. This presents the option Set

Background Pixels to NaN, which instead of making a binary image would give
give an image in which the foreground pixels retain their original values, while
background pixels are Not A Number. This is a special value that can only be
stored in floating point images, which ImageJ ignores when making measurements
later. It is therefore used to mask out regions.

Question 9.1
Through experiment or guesswork, what do you suppose happens to NaNs with
a 32-bit image is converted to 8-bit or 16-bit? Solution

Practical 9.2
Create an image including NaN pixels, then measure some ROIs drawn on it.
Are area measurements a↵ected by whether NaNs are present or not? Solution
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9.4.2 Histogram binning

The second way in which bit-depths and types matter is that histograms of images
> 8-bit involve binning the data. For example, with a 32-bit image it would
probably not make sense to create a histogram that has separate counts for all
possible pixel values: in addition to counts for pixels with exact values 1 and 2,
we would have thousands of counts for pixels with fractions in between (and most
of these counts would be 0). Instead, the histogram is generated by dividing the
total data range (maximum – minimum pixel values) into 256 separate bins with
equal widths, and counting how many pixels have values falling into the range of
each bin. It is therefore like a subtle conversion to 8-bit precision for the threshold
calculation, but without actually changing the original data. The same type of
conversion is used for 16-bit images – unless you use Fiji’s Image ! Adjust !
Auto Threshold command, which uses a full 16-bit histogram with 65536 bins.

Although binning e↵ects can often be ignored, if the total range of pixel values
in an image is very large then it is worth keeping in mind.

Practical 9.3
What are the implications of using a 256-bin histogram for thresholding a 32-bit
image? In particular, how might any outlier pixels a↵ect the accuracy with
which you can define a threshold – automatically or manually?

To explore this, you can use the extreme example of cell outlier.tif along
with the Threshold... command. Analyze ! Histogram lets you investigate
the image histogram with di↵erent numbers of bins – but any changes you
make here will not be reflected in the histogram actually used for thresholding.

How could you (manually) reduce the impact of any problems you find?

Solution

9.5 Measuring objects in binary images

9.5.1 Generating & measuring ROIs

Once we have a binary image, the next step is to identify objects within it and
measure them. In 2D, there are several options:Creating ROIs

The Wand tool,
Create Selection

& Analyze

Particles... can
also be used when a
threshold is being
previewed on an

image, but it has not
yet been converted to

binary.

• Click on an object with the Wand tool to create measurable ROI from it

• Edit ! Selection ! Create Selection makes a single ROI containing
all the foreground pixels. Disconnected regions can be separated by adding
the ROI to the ROI Manager and choosing More >> Split.

• Analyze ! Analyze Particles... detects and measures all the fore-
ground regions as individual objects.
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(a) Original blobs (b) Binary image (c) Original + ROIs (d) Labelled image

Figure 9.6: Examples of a grayscale (Blobs.gif), binary and labelled image. In (c), ROIs
have been generated from (b) and superimposed on top of (a). In (d), each label has been
assigned a unique colour for display.

Analyze Particles... is the most automated and versatile option, making it
possible to ignore regions that are particularly small or large, straight or round
(using a Circularity metric). It can also output summary results and add ROIs
for each region to the ROI Manager. With the Show: Count Masks option, it
will generate a labeled image, in which each pixel has a unique integer value
indicating the number of the object it is part of – or zero if it is in the background.
With a suitably colourful LUT, this can create a helpful and cheerful display
(Figure 9.6d).

Connectivity

4-connected

8-connected

Identifying multiple objects in a binary image involves
separating distinct groups of pixels that are considered
‘connected’ to one another, and then creating a ROI or label
for each group. Connectivity in this sense can be defined in
di↵erent ways. For example, if two pixels have the same value
and are immediately beside one another (above, below, to the
left or right, or diagonally adjacent) then they are said to be 8-
connected, because there are 8 di↵erent neighbouring locations
involved. Pixels are 4-connected if they are horizontally or
vertically adjacent, but not only diagonally.
The choice of connectivity can make a big di↵erence in the
number and sizes of objects found, as the example on the right
shows (distinct objects are shown in di↵erent colours). An
option to specify the connectivity used by the Wand tool can be found by
double-clicking its button.

Question 9.2
What do you suppose 6-connectivity and 26-connectivity refer to? Solution
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Practical 9.4
Work out what kind of connectivity is used by the Analyze Particles...

command. Solution

9.5.2 Redirecting measurements

Although binary images can show the shapes of things to be measured, pixel
intensity measurements made on a binary image are not very helpful. You could
use the above techniques to make ROIs from binary images, then apply those to the
original image to get meaningful measurements. However, it is possible to avoid this
extra step by changing the Redirect to: option under Set Measurements....
This allows you to measure ROIs or run Analyze Particles... with one image
selected and used to define the regions, while redirecting your measurements to
be made on a completely di↵erent image of your choice.

If you use this, just be sure to reset the Redirect to: option when you are
done, to avoid accidentally measuring the wrong image for so long as it is open.
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Solutions

Question 9.1 Since NaN is not an integer, it cannot be stored in an 8-bit or
16-bit unsigned integer image. Instead, all NaNs simply become zero.

Question 9.2 They are. If you measure the area of an image containing NaNs,
the result is less than if you measure the area of the same image converted to 8-bit
– since only the non-NaN parts are included. If you measure a region containing
NaNs only, the area is 0.

Practical 9.3 First, a positive implication of using a 256-bit histogram for
thresholding is that it can be fast: more bins add to the computations involved.
Also, creating too many bins has the result of making most of them zero –
potentially causing some automated threshold-determination algorithms to fail.

A negative implication is that using 256 bins means that only 256 di↵erent
thresholds are possible: that is, if your image range is 0–25500, then the thresholds
you could get are 0, 100, 200, . . . 25500. If the optimal threshold is really 150, this
will not be found. But usually if your range of pixel values is this large, you do
not need a very fine-grained threshold for acceptable results anyway.

This changes if you have outliers. A single extreme pixel – as occurs when a
pixel in a CCD camera is somehow ‘broken’ – can cause most other pixels in the
image to be squeezed into only a few bins. Then the histogram resolution might
really be too small for reasonable thresholding.

Two possible ways to overcome this are:

1. Apply a provisional threshold to detect the outliers only, switch the Dark
background option if necessary, and use the trick of making background
values NaN in thresholded 32-bit images. This eliminates the outlier so
that it cannot influence the results. Recomputing the threshold will simply
ignore it.

2. Convert the image to 8-bit manually yourself. This allows you to e↵ectively
choose the range of the histogram bins (using Brightness/Contrast...;
see Section 3.4) Since the threshold is made using 256 bins, you are not
really losing any information that was not going to be lost anyway.

Question 9.2 6-connectivity is similar to 4-connectivity, but in 3D. If all 3D
diagonals are considered, we end up with each pixel having 26 neighbours.

Question 9.4 At the time of writing, Analyze Particles... uses 8-connectivity.
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Filters

Chapter outline

• Filters can be used to reduce noise and/or enhance features,
making detection & measurement much easier

• Linear filters replace each pixel by a weighted sum of surrounding
pixels

• Nonlinear filters replace each pixel with the result of some other
computation using surrounding pixels

• Gaussian filters have various advantages that make them a good
choice for many applications with fluorescence images

10.1 Introduction

Filters are phenomenally useful. Almost all interesting image analysis involves
filtering of some sort at some stage. In fact, the analysis of a di�cult image
sometimes becomes trivial once a suitable filter has been applied to it. It is
therefore no surprise that much of the image processing literature is devoted to
the topic of designing and testing filters.

The basic idea of filtering here is that each pixel in an image is assigned a new
value depending upon the values of other pixels within some defined region (the
pixel’s neighbourhood). Di↵erent filters work by applying di↵erent calculations to
the neighbourhood to get their output. Although the plethora of available filters
can be intimidating at first, knowing only a few of the most useful is already a
huge advantage.

This chapter begins by introducing several extremely common linear and
nonlinear filters for image processing. It ends by considering in detail some
techniques based on one particularly important linear filter.

10.2 Linear filtering

Linear filters replace each pixel with a linear combination (‘sum of products’) of
other pixels. Therefore the only mathematical background they require is the
ability to add and multiply.

79
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(a) Original image (b) Mean filtered (c) Subtraction (a)–(b)

Figure 10.1: Filters can be used to reduce noise. (a) A spinning disc confocal image of a
yeast cell. (b) Applying a small mean filter makes the image smoother, as is particularly
evident in the fluorescence plot made through the image centre. (c) Computing the
di↵erence between images shows what the filter removed, which was mostly random noise.

10.2.1 Mean filters

To begin, consider the somewhat noisy image of a yeast cell in Figure 10.1a. The
noise can be seen in the random jumps in the fluorescence intensity profile shown.
One way to improve this is to take each pixel, and simply replace its value with
the mean (average) of itself and the 8 pixels immediately beside it (including
diagonals). This ‘averages out’ much of this noisy variation, giving a result that
is considerably smoother (b). Subtracting the smoothed image from the original
shows that what has been removed consists of small positive and negative values,
mostly (but not entirely) lacking in interesting structure (c).

This smoothing is what a 3⇥3 mean filter1 does. Each new pixel now depends
upon the average of the values in a 3⇥ 3 pixel region: the noise is reduced, at a
cost of only a little spatial information. The easiest way to apply this in ImageJ
is through the Process ! Smooth command2. But this simple filter could be
easily modified in at least two ways:

1. Its size could be increased. For example, instead of using just the pixels
immediately adjacent to the one we are interested in, a 5 ⇥ 5 mean filter
replaces each pixel by the average of a square containing 25 pixels, still
centred on the main pixel of interest.

1Also called an arithmetic mean, averaging or box-car filter.
2Note that the shortcut is Shift + S – a fact I rediscover regularly when intending to save

my images. Be careful!
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(a) Original image (b) Filtered, radius=1 (c) Filtered, radius=5 (d) Filtered, radius=10

Figure 10.2: Smoothing an image using mean filters with di↵erent radii.

2. The average of the pixels in some other shape of region could be computed,
not just an n⇥ n square.

Process ! Filters ! Mean... is ImageJ’s general command for mean
filtering. It uses approximately circular neighbourhoods, and the neighbourhood
size is adjusted by choosing a Radius value. The Show Circular Masks command
displays the neighbourhoods used for di↵erent values of Radius. If you happen to
choose Radius = 1, you get a 3⇥ 3 filter – and the same results as using Smooth.

Figure 10.2 shows that as the radius increases, the image becomes increasingly
smooth – losing detail along with noise. This causes the result to look blurry.
If noise reduction is the primary goal, it is therefore best to avoid unnecessary
blurring by using the smallest filter that gives acceptable results. More details on
why mean filters reduce noise, and by how much, will be given in Chapter 16.

Question 10.1
Setting Radius = 6 gives a circular filter that replaces each pixel with the
mean of 121 pixels. Using a square 11⇥ 11 filter would also replace each pixel
with the mean of 121 pixels. Can you think of any advantages in using the
circular filter rather than the square filter? Solution

10.2.2 General linear filters

There are various ways to compute a mean of N di↵erent pixels. One is to add
up all the values, then divide the result by N . Another is to multiply each value
by 1/N , then add up the results. The second approach has the advantage that it
is easy to modify to achieve a di↵erent outcome by changing the weights used to
scale each pixel depending upon where it is. This is how a linear filter works in
general, and mean filters are simply one specific example.
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(a) 3⇥3 square (b) 5⇥ 5 square (c) Circular, radius = 1.5 (d) Circular, radius = 2

Figure 10.3: The kernels used with several mean filters. Note that (c) and (d) are the
‘circular’ filters used by ImageJ’s Mean... command for di↵erent radii.

A linear filter is defined by a filter kernel (or filter mask). This resembles
another (usually small and rectangular) image in which each pixel is known as a
filter coe�cient and these correspond to the the weights used for scaling. In the
case of a mean filter, the coe�cients are all the same (or zero, if the pixel is not
part of the neighbourhood), as shown in Figure 10.3. But di↵erent kernels can
give radically di↵erent results, and be designed to have very specific properties.

An algorithm to apply the filtering is shown in Figure 10.4.

Question 10.2
When filtering, the output for each pixel is usually put into a new image – so
that the original image is unchanged (although ImageJ might switch the new
image in place of the old as soon as it is finished, so that it looks like the image
was changed).

Is the creation of a new image really necessary for the algorithm in Figure 10.4
to work, or does it just prevent the old image being lost – allowing you to
retrieve it by pressing Undo? Solution

10.2.3 Defining your own filters

The application of such filtering is often referred to as convolution, and if you
like you can go wild inventing your own filters using the Process ! Filters !
Convolve... command. This allows you to choose which specific coe�cients the
filter should have, arranged in rows and columns. If you choose the Normalize
Kernel option then the coe�cients are scaled so that they add to 1 (if possible),
by dividing by the sum of all the coe�cients.

Question 10.3
When defining an n⇥ n filter kernel with Convolve..., ImageJ insists that n
is an odd number. Why? Solution
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(a) The filter is positioned over the top corner of the image. The products of the filter
coe�cients and the corresponding image pixel values are added together, and the result
inserted in a new output image (although here the output is displayed in the original image to
save space).

(b) The filter is shifted to the next pixel in line, and the process repeated.

(c) The filtering continues into the third pixel.

(d) The filtering operation is applied to all pixels in the image to produce the final output.

Figure 10.4: Applying a linear filter to an image containing two non-zero pixels using the
sum-of-products algorithm. The result is an image that looks like it contains two (scaled)
versions of the filter itself, which in this case overlap with one another.
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(a) Horizontal gradient (b) Vertical gradient (c) Gradient magnitude

Figure 10.5: Using gradient filters and the gradient magnitude for edge enhancement.

Question 10.4
Predict what happens when you convolve an image using a filter that consists
of a single coe�cient with a value -1 in the following cases:

1. Normalize Kernel is checked

2. You have a 32-bit image (Normalize Kernel is unchecked)

3. You have an 8-bit image (Normalize Kernel is unchecked)

Solution

10.2.4 Gradient filters

Often, we want to detect structures in images that are distinguishable from the
background because of their edges. So if we could detect the edges we would be
making good progress. Because an edge is usually characterized by a relatively
sharp transition in pixel values – i.e. by a steep increase or decrease in the profile
across the image – gradient filters can be used to help.Finding edges

For more
sophisticated edge

detection, see
FeatureJ Edges &

FeatureJ

Laplacian, or search
for Canny-Deriche

filtering.

A very simple gradient filter has the coe�cients -1, 0, 1. Applied to an
image, this replaces every pixel with the di↵erence between the pixel to the right
and the pixel to the left. The output is positive whenever the fluorescence is
increasing horizontally, negative when the fluorescence is decreasing, and zero
if the fluorescence is constant – no matter what the original constant value was,
so that flat areas are zero in the gradient image irrespective of their original
brightness. We can also rotate the filter by 90� and get a vertical gradient image
(Figure 10.5).

Having two gradient images with positive and negative values can be somewhat
hard to work with. If we square all the pixels in each, the values become positive.
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Then we can add both the horizontal and vertical images together to combine
their information. If we compute the square root of the result, we get what is
known as the gradient magnitude3, which has high values around edges, and low
values everywhere else. This is (almost) what is done by the command Process

! Find Edges.

Practical 10.1
Try calculating the gradient magnitude using Duplicate..., Convolve...,
Image Calculator... and several commands in the Process ! Math !
submenu. If you need a sample image, you can use File ! Open Samples

! Blobs (25K). (Be sure to pay attention to the bit-depth!) Solution

Question 10.5
Suppose the mean pixel value of an image is 100. What will the mean value be
after applying a horizontal gradient filter? Solution

Practical 10.2
There is a LUT called edges in ImageJ. Applied to File ! Open Samples

! Blobs (25K), it does a rather good job of highlighting edges – without
actually changing the pixels at all. How does it work? Solution

10.2.5 Convolution & correlation

Although linear filtering and convolution are terms that are often used synony-
mously, the former is a quite general term while the latter can be used in a
somewhat more restricted sense. Specifically, for convolution the filter should be
rotated by 180� before applying the algorithm of Figure 10.4. If the algorithm
is applied without the rotation, the result is really a correlation. However, this
distinction is not always kept in practice; convolution is the more common term,
and often used in image processing literature whenever no rotation is applied.
Fortunately, much of the time we use symmetric filters, in which case it makes
absolutely no di↵erence which method is used. But for gradient filters, for example,
it is good to be aware that the sign out the output (i.e. positive or negative)
would be a↵ected.

Why rotate a filter for convolution?
It may not be entirely clear why rotating a filter for convolution would be
worthwhile. One partial explanation is that if you convolve a filter with an
image containing only a single non-zero pixel that has a value of one, the result

3The equation then looks like Pythagoras’ theorem: G
mag

=
p

G2
x

+G2
y
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(a) A copy of the filter is centred on every non-
zero pixel in the image, and its coe�cients are
multiplied by the value of that pixel.

(b) The coe�cients of the scaled filters are
assigned to the pixels of the output image, and
overlapping values added together.

Figure 10.6: An alternative view of convolution as the summation of many scaled filters.
Here, only two pixels in the original image have non-zero values so only two copies of the
filter are needed, but often all pixels are non-zero – resulting in the addition of as many
scaled filters as there are pixels. The final image computed this way is the same as that
obtained by the method in Figure 10.4 – assuming either symmetrical filters, or that one
of them has been rotated.

is an exact replica of the filter. But if you correlate the filter with the same
image, the result is a rotated version of the filter. This can be inferred from
Figures 10.4a and 10.4b: you can see that when the bottom right value of the
filter overlaps with the first non-zero pixel, it results in the filter coe�cient’s
value being inserted in the top left of the image. Thus the application of the
algorithm in Figure 10.4 inherently involves a rotation, and by rotating the
filter first this is simply ‘corrected’.

This leads to an equivalent way to think of convolution: each pixel value in an
image scales the filter, and then these scaled filters replace the original pixels
in the image – with overlapping values added together (Figure 10.6). This idea
reappears in Chapter 15, because convolution happens to also describe the blur
inherent in light microscopy.

Question 10.6
Does ImageJ’s Convolve... command really implement convolution – or is it
actually correlation? Solution
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(a) Original image

(b) Zeros (c) Replication

(d) Periodicy (e) Mirroring

Figure 10.7: Methods for determining suitable values for pixels beyond image boundaries
when filtering.

Filtering at image boundaries

If a filter consists of more than one coe�cient, the
neighbourhood will extend beyond the image boundaries
when filtering some pixels nearby. These boundary
pixels could simply be ignored and left with their
original values, but for large neighbourhoods this
would result in much of the image being unfiltered.
Alternative options include treating every pixel beyond
the boundary as zero, replicating the closest valid pixel,
treating the image as if it is part of a periodic tiling, or
mirroring the internal values (Figure 10.7).

Practical 10.3
Using any image, work out which of the methods for dealing with boundaries
shown in Figure 10.7 is used by ImageJ’s Convolve... command. Solution
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Figure 10.8: Results of
di↵erent 3⇥ 3 rank filters
when processing a single
neighbourhood in an im-
age. The output of a 3⇥3
mean filter in this case
would also be 15.

(a) Speckled image (b) Mean filter (c) Median filter

Figure 10.9: Applying mean and median filters (radius = 1 pixel) to an image containing
isolated extreme values (known as salt and pepper noise). A mean filter reduces the
intensity of the extreme values but spreads out their influence, while a small median filter
is capable of removing them completely with a minimal e↵ect upon the rest of the image.

10.3 Nonlinear filters

Linear filters involve taking neighbourhoods of pixels, scaling them by specified
constants, and adding the results to get new pixel values. Nonlinear filters also
make use of neighbourhoods of pixels, but with di↵erent calculations to obtain the
output. Here we will consider one especially important family of nonlinear filters.

10.3.1 Rank filters

Rank filters e↵ectively sort the values of all the neighbouring pixels in ascending
order, and then choose the output based upon this ordered list. The most common
example is the median filter, in which the pixel value at the centre of the list is
used for the filtered output. The result is often similar to that of a mean filter, but
has the major advantage of removing extreme isolated values completely, without
allowing them to have an impact upon surrounding pixels. This is in contrast to
a mean filter, which cannot ignore extreme pixels but rather will smooth them
out into occupying larger regions (Figure 10.9). However, a disadvantage of a
median filter is that it can seem to introduce patterns or textures that were not
present in the original image, at least whenever the size of the filter increases (see
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(a) Median filter (b) Maximum filter (c) Minimum filter

Figure 10.10: The result of applying three rank filters (radius = 1 pixel) to the noise-free
image in Figure 10.13a.

Figure 10.13d). Another disadvantage is that large median filters tend to be slow.
Other rank filters include the minimum and maximum filters, which replace

each pixel value with the minimum or maximum value in the surrounding
neighbourhood respectively (Figure 10.10). They will become more important in
Chapter 11.

Question 10.7
What would happen if you subtract a minimum filtered image (e.g. Fig-
ure 10.10c) from a maximum filtered image (Figure 10.10b)? Solution

Removing outliers

Figure 10.9 shows that median filtering is much better than mean filtering for
removing outliers. We might encounter this if something in the microscope is
not quite functioning as expected or if dark noise is a problem, but otherwise
we expect the noise in fluorescence microscopy images to produce few really
extreme values (see Chapter 16).

Nevertheless, Process ! Noise ! Remove Outliers... provides an alter-
native if isolated bright values are present. This is a nonlinear filter that inserts
median values only whenever a pixel is found that is further away from the
local median than some adjustable threshold. It is therefore like a more selective
median filter that will only modify the image at pixels where it is considered
really necessary. The main di�culty is then choosing a sensible threshold.
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(a) Original dots (b) Mean filtered (c) Gaussian filtered

Figure 10.11: Comparing a mean and Gaussian filter. The mean filter can introduce
patterns and maxima where previously there were none. For example, the brightest region
in (b) is one such maximum – but the values of all pixels in the same region in (a) were
zero! By contrast, the Gaussian filter produced a smoother, more visually pleasing result,
less prone to this e↵ect (c).

Figure 10.12: Surface plot of a 2D Gaussian
function, calculated using the equation

g(x, y) = Ae

�( x

2+y

2

2�2 )

The scaling factor A is used to make the
entire volume under the surface equal to 1,
which in terms of filtering means that the
coe�cients add to 1 and the image will not be
unexpectedly scaled. The size of the function
is controlled by �.

10.4 Gaussian filters

10.4.1 Gaussian filters from Gaussian functions

We end this chapter with one fantastically important linear filter, and some
variants based upon it. A Gaussian filter is a linear filter that also smooths an
image and reduces noise. However, unlike a mean filter – for which even the
furthest away pixels in the neighbourhood influence the result by the same amount
as the closest pixels – the smoothing of a Gaussian filter is weighted so that the
influence of a pixel decreases with its distance from the filter centre. This tends
to give a better result in many cases (Figure 10.11).

The coe�cients of a Gaussian filter are determined from a Gaussian function
(Figure 10.12), and its size is controlled by a � value – so when working with
ImageJ’s Gaussian Blur... command, you will need to specify this rather than
the filter radius. � is equivalent to the standard deviation of a normal (i.e.
Gaussian) distribution. A comparison of several filters is shown in Figure 10.13.
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(a) Original, noise-free image (b) Noisy image

(c) Mean filtered, radius = 2 (d) Median filtered, radius = 2

(e) Gaussian filtered, � = 1 (f) Gaussian filtered, � = 2.5

Figure 10.13: The e↵ects of various linear and nonlinear filters upon a noisy image of
fixed cells.
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(a) Original image (b) Gaussian � = 2 (c) Gaussian � = 5

(d) Profile plots of the intensity in the red channel of the image

Figure 10.14: The e↵ect of Gaussian filtering on the size and intensity of structures.
The image is taken from File ! Open Samples ! HeLa Cells, with some additional
simulated noise added to show that this is also reduced by Gaussian filtering.

10.4.2 Filters of varying sizes

Gaussian filters have useful properties that make them generally preferable to
mean filters, some of which will be mentioned in Chapter 15 (others require a trip
into Fourier space, beyond the scope of this book). Therefore if in doubt regarding
which filter to use for smoothing, Gaussian is likely to be the safer choice.

A small filter will mostly suppress noise, because noise masquerades as tiny
fluorescence fluctuations at individual pixels. As the filter size increases, Gaussian
filtering starts to suppress larger structures occupying multiple pixels – reducing
their intensities and increasing their sizes, until eventually they would be smoothed
into surrounding regions (Figure 10.14). By varying the filter size, we can then
decide the scale at which the processing and analysis should happen.

Figure 10.15 shows an example of when this is useful. Here, gradient magnitude
images are computed similar to that in Figure 10.5, but because the original image
is now noisy the initial result is not very useful – with even strong edges being
buried amid noise (b). Applying a small Gaussian filter prior to computing the
gradient magnitude gives much better results (c), but if we only wanted the very
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(a) Original image (b) No smoothing (c) Gaussian � = 2 (d) Gaussian � = 5

Figure 10.15: Applying Gaussian filters before computing the gradient magnitude changes
the scale at which edges are enhanced.

(a) Original image (b) DoG, � =1, 2 (c) DoG, � =2, 4 (d) DoG, � =4, 8

Figure 10.16: Di↵erence of Gaussian filtering of the same image at various scales.

(a) Small Gaussian filter (b) Larger Gaussian filter (c) DoG filter

Figure 10.17: Surface plots of two Gaussian filters with small and large �, and the result
of subtracting the latter from the former. The sum of the coe�cients for (a) and (b) is
one in each case, while the coe�cients of (c) add to zero.

strongest edges then a larger filter would be better (d).

10.4.3 Di↵erence of Gaussians filtering

So Gaussian filters can be chosen to suppress small structures. But what if we
also wish to suppress large structures – so that we can concentrate on detecting
or measuring structures with sizes inside a particular range?



94 CHAPTER 10. FILTERS

(a) Original image (b) DoG filtered (c) LoG filtered

Figure 10.18: Application of DoG and LoG filtering to an image. Both methods enhance
the appearance of spot-like structures, and (to a lesser extent) edges, and result in an
image containing both positive and negative values with an overall mean of zero. In the
case of LoG filtering, inversion is involved: darker points become bright after filtering.

We already have the pieces necessary to construct one solution. Suppose we
apply one Gaussian filter to reduce small structures. Then we apply a second
Gaussian filter, bigger than the first, to a duplicate of the image. This will remove
even more structures, while still preserving the largest features in the image. But
if we finally subtract this second filtered image from the first, we are left with
an image that contains the information that ‘falls between’ the two smoothing
scales we used. This process is called di↵erence of Gaussians (DoG) filtering, and
it is especially useful for detecting small spots or as an alternative to the gradient
magnitude for enhancing edges (Figure 10.16).

DoG filters
In fact, to get the result of DoG filtering it is not necessary to filter the image
twice and subtract the results. We could equally well subtract the coe�cients
of the larger filter from the smaller first (after making sure both filters are the
same size by adding zeros to the edges as required), then apply the resulting
filter to the image only once (Figure 10.17).

10.4.4 Laplacian of Gaussian filtering

One minor complication with DoG filtering is the need to select two di↵erent
values of �. A similar operation, which requires only a single � and a single filter,
is Laplacian of Gaussian (LoG) filtering. The appearance of a LoG filter is like an
upside-down DoG filter (Figure 10.19), but if the resulting filtered image is inverted
then the results are comparable4. You can test out LoG filtering in Fiji using
Plugins ! Feature Extraction ! FeatureJ ! FeatureJ Laplacian.

4A LoG filter is also often referred to as a mexican-hat filter, although clearly the filter (or
the hat-wearer) should be inverted for the name to make more sense.
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(a) Laplacian of Gaussian filter (b) Inverted version of (a)

Figure 10.19: Surface plot of a LoG filter. This closely resembles Figure 10.18, but
inverted so that the negative values are found in the filter centre.

(a) Original image (b) Gaussian subtracted (c) Unsharp masked

Figure 10.20: The application of unsharp masking to a blurred image. First a Gaussian-
smoothed version of the image (� = 1) is subtracted from the original, scaled (weight =
0.7) and added back to the original.

Practical 10.4
Why does the FeatureJ Laplacian command have a Detect zero-crossings

option? If you are unsure, you can try it out on DoG on LoG.png. You should
also investigate the e↵ects of changing the Smoothing scale option. Solution

10.4.5 Unsharp masking

Finally, a related technique widely-used to enhance the visibility of details in
images – although not advisable for quantitative analysis – is unsharp masking
(Process ! Filters ! Unsharp mask...).

This uses a Gaussian filter first to blur the edges of an image, and then
subtracts it from the original. But rather than stop there, the subtracted image
is multiplied by some weighting factor and added back to the original. This gives
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an image that looks much the same as the original, but with edges sharpened by
an amount dependent upon the chosen weight.

Unsharp masking can improve the visual appearance of an image, but it is
important to remember that it modifies the image content in a way that might
well be considered suspicious in scientific circles. Therefore, if you apply unsharp
masking to any image you intend to share with the world you should have a
good justification and certainly admit what you have done. If you want a more
theoretically justified method to improve image sharpness, it may be worth looking
into ‘(maximum likelihood) deconvolution’ algorithms.



SOLUTIONS 97

Solutions

Question 10.1 Circles are more ‘compact’. Every point on the perimeter of
a circle is the same distance from the centre. Therefore using a circular filter
involves calculating the mean of all pixels a distance of  Radius pixels away from
the centre. For a square filter, pixels that are further away in diagonal directions
than horizontal or vertical directions are allowed to influence the results. If a
pixel is further away, it is more likely to have a very di↵erent value because it is
part of some other structure.

Question 10.2 A new image is needed for the algorithm to work. Otherwise,
if we put the results directly into the image we are still filtering then we would
only be guaranteed to get the correct result for the first pixel. For later pixels,
computations would involve a combination of original and already-filtered pixel
values, which would most likely give a di↵erent final result.

Question 10.3 If n is an odd number, the filter has a clear central pixel. This
makes things easier whenever using the approach outlined in Figure 10.4.

Question 10.4 The results of convolving with a single -1 coe�cient in di↵erent
circumstances:

1. Normalize Kernel is checked : Nothing at all happens. The normalization
makes the filter just a single 1. . . and convolving with a single 1 leaves the
image unchanged.

2. You have a 32-bit image (Normalize Kernel unchecked): The pixel values
become negative, and the image looks inverted.

3. You have an 8-bit image (Normalize Kernel unchecked): The pixel values
would become negative, but then cannot be stored in an 8-bit unsigned
integer form. Therefore, all pixels simply become clipped to zero.

Practical 10.1 The process to calculate the gradient magnitude is:

1. Convert the image to 32-bit and duplicate it

2. Convolve one copy of the image with the horizontal gradient filter, and one
with the vertical

3. Compute the square of both images (Process ! Math ! Square)
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4. Use the image calculator to add the images together

5. Compute the square root of the resulting image (Process ! Math !
Square Root)

Note that this process goes wrong if the image is stored in some unsigned integer
format, since it needs negative values.

Question 10.5 After applying a gradient filter, the image mean will be 0: every
pixel is added once and subtracted once when calculating the result. If you are
sceptical about this: test it, making sure the image is 32-bit first.

Practical 10.2 The edges LUT shows most low and high pixel values as black
– and uses lighter shades of gray only for a small range of values in between
(see Image ! Color ! Edit LUT...). In any image with a good separation
of background and foreground pixels, but which still has a somewhat smooth
transition between them, this means everything but the edges can appear black.

Question 10.6 At the time of writing, the Convolve... command actually
applies correlation!

Practical 10.3 Replication of boundary pixels is the default method used by
Convolve... in ImageJ (although other filtering plugins by di↵erent authors
might use di↵erent methods).

My approach to test this involved using Convolve... with a filter that
consisting of a 1 followed by a lot of zeros (e.g. 1 0 0 0 0 0 0 0 0 0 0 0 0).
This basically shifts the image to the right, bringing whatever is outside the image
boundary into view.

Question 10.7 Subtracting a minimum from a maximum filtered image would
be another way to accent the edges:
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Practical 10.4 After computing the LoG filtered image, Detect zero-crossings

identifies locations where the sign of adjacent pixels changes from negative-to-
positive (or vice versa). Thanks to the properties of the Laplacian operator, these
correspond to edges. Unfortunately, they often give rather a lot more edges than
you might like – but by increasing the Smoothing scale parameter, the sigma
value is increased to cause more smoothing and thereby reduce the edges caused
by small structures or noise (see Figure 10.15).
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Binary images

Chapter outline

• Morphological operations can be used to refine or modify the
shapes of objects in binary images

• The distance & watershed transforms can be used to separate
close, round structures

11.1 Introduction

By means of filtering and thresholding, we can create binary images to detect
structures of various shapes and sizes for di↵erent applications. Nevertheless,
despite our best e↵orts these binary images often still contain inaccurate or
undesirable detected regions, and could benefit from some extra cleaning up.
Since at this stage we have moved away from the pixel values of the original image
and are working only with shapes – morphology – the useful techniques are often
called morphological operations. In ImageJ, several of these are to be found in the
Process ! Binary submenu.

(a) Erosion (b) Dilation (c) Opening (d) Closing

Figure 11.1: The e↵ects of the Erode, Dilate, Open and Close- commands. The original
image is shown at the top, while the processed part is at the bottom in each case.
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11.2 Morphological operations using rank filters

11.2.1 Erosion & dilation

Our first two morphological operations, erosion and dilation, are actually
identical to minimum and maximum filtering respectively, described already
in Section 10.3.1. The names erosion and dilation are used more often when
speaking of binary images, but the operations are the same irrespective of the kind
of image. Erosion will make objects in the binary image smaller, because a pixel
will be set to the background value if any other pixels in the neighbourhood are
background. This can split single objects into multiple ones. Conversely, dilation
makes objects bigger, since the presence of a single foreground pixel anywhere in
the neighbourhood will result in a foreground output. This can also cause objects
to merge.

11.2.2 Opening & closing

The fact that erosion and dilation alone a↵ect sizes can be a problem: we may like
their abilities to merge, separate or remove objects, but prefer that they had less
impact upon areas and volumes. Combining both operations helps achieve this.

Opening consists of an erosion followed by a dilation. It therefore first shrinks
objects, and then expands them again to an approximately similar size. Such
a process is not as pointless as it may first sound. If erosion causes very small
objects to completely disappear, clearly the dilation cannot make them reappear:
they are gone for good. Barely-connected objects separated by erosion are also
not reconnected by the dilation step.

Closing is the opposite of opening, i.e. a dilation followed by an erosion, and
similarly changes the shapes of objects. The dilation can cause almost-connected
objects to merge, and these often then remain merged after the erosion. If you
wish to count objects, but these are wrongly subdivided in the segmentation,
closing may therefore help make the counts more accurate.

These operations are implemented with the Erode, Dilate, Open and Close-

commands – but only using 3 ⇥ 3 neighbourhoods. To perform the operations
with larger neighbourhoods, you can simply use the Maximum... and Minimum...

filters, combining them to get opening and closing if necessary. Alternatively, in
Fiji you can explore Process ! Morphology ! Gray Morphology.

11.3 Outlines, holes & maximum

The Outline command, predictably, removes all the interior pixels from 2D binary
objects, leaving only the perimeters (Figure 11.2a). Fill Holes would then fill
these interior pixels in again, or indeed fill in any background pixels that are
completely surrounded by foreground pixels (Figure 11.2b). Skeletonize shaves
o↵ all the outer pixels of an object until only a connected central line remains
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(a) Outline (b) Fill holes (c) Skeletonize

Figure 11.2: The e↵ects of the Outline, Fill holes and Skeletonize commands.

(Figure 11.2c). If you are analyzing linear structures (e.g. blood vessels, neurons),
then this command or those in Fiji’s Plugins ! Skeleton submenu may be
helpful.

Question 11.1
The outline of an object in a binary image can also be determined by applying
one other morphological operation to a duplicate of the image, and then using
the Image Calculator. How? Solution

11.4 Using image transforms

An image transform converts an image into some other form, in which the pixel
values can have a (sometimes very) di↵erent interpretation. Several transforms
are relevant to refining image segmentation.

11.4.1 The distance transform

The distance transform replaces each pixel of a binary image with the distance to
the closest background pixel. If the pixel itself is already part of the background
then this is zero (Figure 11.3c). It can be applied using the Process ! Binary

! Distance Map command, and the type of output given is determined by
the EDM output option under Process ! Binary ! Options... (where EDM
stands for ‘Euclidean Distance Map’). This makes a di↵erence, because the
distance between two diagonal pixels is considered

p
2 ⇡ 1.414 (by Pythagoras’

theorem), so a 32-bit output can give more exact straight-line distances without
rounding.

A natural question when considering the distance transform is: why? Although
you may not have a use for it directly, with a little creative thinking it can help
solve some other problems rather elegantly. For example, Ultimate Points uses
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(a) Original image (b) Thresholded image (c) Distance transform

(d) Distance transform of in-
verted thresholded image

(e) Voronoi (f) Voronoi + Ultimate points

Figure 11.3: Applying the distance transform and related commands to a segmented
(using Otsu’s threshold) version of the sample image Blobs. In (f), the original image is
shown in the red channel, the Voronoi lines shown in gray and the ultimate points added
as a Point selection.

the distance transform to identify the last points that would be removed if the
objects would be eroded until they disappear. In other words, it identifies centres.
But these are not simply single centre points for each object; rather, they are
maximum points in the distance map, and therefore the pixels furthest away
from the boundary. This means that if a structure has several ‘bulges’, then an
ultimate point exists at the centre of each of them. If segmentation has resulted
in structures being merged together, then each distinct bulge could actually
correspond to something interesting – and the number of bulges actually means
more than the number of separated objects in the binary image (Figure 11.3f).

Alternatively, if the distance transform is applied to an inverted binary image,
the pixel values give the distance to the closest foreground object (Figure 11.3d).
With this, the Voronoi command partitions an image into di↵erent regions so
that the separation lines have an equal distance to the nearest foreground objects.
Now suppose we detect objects in two separate channels of an image, and we want
to associate those in the second channel with the closest objects in the first. We
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(a) Water starts to fill the
deepest regions first

(b) As the water rises, dams
are built to prevent overflow

(c) The water continues rising
until reaching its maximum

Figure 11.4: A schematic diagram showing the operation of the watershed transform in 1
dimension. If you imagine rain falling on a hilly surface, the deepest regions fill up with
water first. As the water rises further, soon the water from one of these regions would
overflow into another region – in which case a dam is built to prevent this. The water
continues to rise and dams added as necessary, until finally when viewed from above every
location is either covered by water or belongs to a dam.

could potentially calculate the distance of all the objects from one another, but
this would be slow and complicated. Simply applying Voronoi to the first channel
gives us di↵erent partitions, and then we only need to see which partition each
object in the second channel falls into (see Figure 11.3f). This will automatically
be the same partition as the nearest first-channel object.

Question 11.2
Imagine you have created a binary image containing detected cells, but you
are only interested in the region inside the cell that is close to the membrane,
i.e. within 5 pixels of the edge of each detected object. Any pixels outside
the objects or closer to their centres do not matter. How would you go about
finding these regions?

Note: There are a few ways using the techniques in this chapter, although these
do not necessarily give identical results. Solution

11.4.2 The watershed transform

The watershed transform provides an alternative to straightforward thresholding
if you need to partition an image into many di↵erent objects. To understand how
it works, you should imagine the image as an uneven surface in which the value
of each pixel corresponds to a height. Now imagine water falling evenly upon this
surface and slowly flooding it. The water gathers first in the deepest parts; that
is, in the places where pixels have values lower than all their neighbours. Each of
these we can call a water basin.

As the water level rises across the image, occasionally it will reach a ridge
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(a) Binary image +
ultimate points

(b) Watershed separa-
tion of objects in (a)

(c) Detail from 9.5f (d) Watershed separa-
tion of objects in (c)

Figure 11.5: Applying the watershed transform to the binary images from Figures 11.3
and 9.5 is able to separate some of the merged spots based upon their shape.

between two basins – and in reality water could spill from one basin into the
other. However, in the watershed transform this is not permitted; rather a dam is
constructed at such ridges. The water then continues to rise, with dams being
built as needed, until in the end every pixel is either part of a basin or a ridge,
and there are exactly the same number of basins afterwards as there were at first.Intensity-based

watershed
To apply the

watershed transform
to the original data,
see Process ! Find

Maxima... with the
output type
Segmented

Particles

This is the general principle of the watershed transform, and is illustrated in
Figure 11.4. ImageJ’s Watershed command is a further development of this, in
which the watershed transform is applied to the distance transform of a binary
image, where the distance transform has also been inverted so that the centres
of objects (which, remember, are just the ultimate points mentioned above) now
become the deepest parts of the basins that will fill with water. The end result
is that any object that contains multiple ultimate points has ridges built inside
it, separating it into di↵erent objects. If we happen to have wanted to detect
roundish structures that were unfortunately merged together in our binary image,
then this may well be enough to un-merge them (Figure 11.5).

Visualizing the watershed transform
If you turn on Debug mode under Edit ! Options ! Misc... and then
run the Watershed command on an image, a stack is created in which you can
see the individual steps of the transform – and perhaps get a better idea of
what it is doing.
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Solutions

Question 11.1 To outline the objects in a binary image, you can simply
calculate the di↵erence between the original image and an eroded (or dilated, if
you want the pixels just beyond the objects) version.

Question 11.2 Two ways to find the region close to the boundaries of detected
cells:

1. Compute the distance transform of the image. Run Threshold...,
choose Set and enter Lower Threshold Level: 1 and Higher Threshold

Level: 5.

2. Duplicate the original binary image, then erode the duplicated version using
a Minimum filter, Radius = 5 pixels. Compute the di↵erence between this
and the original using the Image Calculator....

There are more possible ways, such as applying Outline, dilating the result and
then excluding pixels that fall outside the original cell regions. . . but that is a bit
more work.
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Processing data with higher dimensions

Chapter outline

• Many processing operations can be extended into more than 2
dimensions

• Adding extra dimensions can greatly increase the processing
requirements

• Objects can be detected & measured in 3D

12.1 Introduction

So far, we have concentrated on only 2D images. Most of the operations we
have considered can also be applied to 3D data – and sometimes data with more
dimensions, in cases where this is meaningful.

12.2 Point operations, contrast & conversion

Point operations are straightforward: they depend only on individual pixels, so
the number of dimensions is unimportant. Image arithmetic involving a 3D stack
and a 2D image can also be carried out in ImageJ using the Image Calculator,
where the operation involving the 2D image is applied to each slice of the 3D stack
in turn. Other options, such as filtering and thresholding, are possible, but bring
with them extra considerations – and often significantly higher computational
costs.

Setting the LUT of a 3D image requires particular care. The normal
Brightness/Contrast... tool only takes the currently-displayed slice into
consideration when pressing Reset or Auto. Optimizing the display for a single
slice does not necessarily mean the rest of the stack will look reasonable if the
brightness changes much. Process ! Enhance Contrast... is a better choice,
since here you can specify that the information in the entire stack should be used.
You can also specify the percentage of pixels that should be saturated (clipped)
for display, i.e. those that should be shown with the first or last colours in the
LUT. So long as Normalize and Equalize histogram are not selected, the pixel
values will not be changed.

109
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Question 12.1
By default, the percentage of saturated pixels in Enhance Contrast... is set
to 0.4. Why might this be chosen instead of 0? Solution

Converting bit-depths of multidimensional images
As described in Section 3.4, the minimum and maximum display range values
are used by default when reducing the bit-depth of an image. To minimize the
information lost, these should be set to the minimum and maximum pixel values
within the image – otherwise values will be clipped. In 2D it is enough to press
Reset in the Brightness/Contrast window, but in 3D this will only work if
the minimum and maximum values from the entire stack happen to appear on
the current slice! Therefore it is good practice to run Enhance Contrast...

prior to reducing bit-depths of stacks, setting the saturation to 0 and using
the entire stack. This means no pixels will be clipped in the output (although
rescaling and rounding will still occur).

12.3 3D filtering

Many filters naturally lend themselves to being applied to as many dimensions
as are required. For example, a 3⇥ 3 mean filter can easily become a 3⇥ 3⇥ 3
filter if averaging across slices is allowed. Significantly, it then replaces each pixel
by the average of 27 values, rather than 9. This implies the reduction in noise is
similar to that of applying a 5⇥ 5 filter (25 values), but with a little less blurring
in 2D and a little more along the third dimension instead. Several 3D filters are
available under the Plugins ! Process ! submenu.

12.3.1 Fast, separable filters

The fact that 3D filters inherently involve more pixels is one reason that they
tend to be slow. However, if a filter happens to have the very useful property of
separability, then its speed can be greatly improved. Mean and Gaussian filters
have this property, as do minimum and maximum filters (of certain shapes) – but
not median.

The idea is that instead of applying a single n⇥n⇥n filter, three di↵erent 1D
filters of length n can be applied instead – rotated so that they are directed along
each dimension in turn. Therefore rather than n

3 multiplications and additions
being required to calculate each pixel in the linear case, as in Figure 10.4, only 3n
multiplications and additions are required. With millions of pixels involved, even
when n is small the saving can be huge. Figure 12.1 shows the basic idea in 2D,
but it can be extended to as many dimensions as needed. Process ! Filters

! Gaussian Blur 3D... uses this approach.
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(a) Original image (b) Horizontally smoothed (a) (c) Vertically smoothed (b)

Figure 12.1: Smoothing applied separably using a 1D Gaussian filter (first aligned
horizontally, then vertically) to an image or a rather well-protected young man seen
playing safely on the streets of Heidelberg in 2010. The end result (c) is the same as what
would be obtained by applying a single, 2D Gaussian filter to (a).

Fast filters & the Fourier transform
Not all linear filters are separable, and applying a large, non-separable linear
filter can also be extremely time-consuming. However, when this is the case
a whole other method can be used to get the same result using the Fourier
transform – where the speed no longer has the same dependence upon the filter
size. Unfortunately, the Fourier method cannot be used for non-linear filters
such as the median filter.

12.3.2 Dimensions & isotropy

If applying a filter in 3D instead of 2D, it may seem natural to define it as having
the same size in the third dimension as in the original two. But for a z-stack, the
spacing between slices is usually larger than the width and height of a pixel. And
if the third dimension is time, then it uses another scale entirely. Therefore more
thought usually needs to be given to what sizes make most sense. Isotropic filters

A filter is said to be
isotropic if it has the
same e↵ect along all

dimensions.

In some commands (e.g. Plugins ! Processor ! Smooth (3D)), there is
a Use calibration option to determine whether the values you enter are defined
in terms of the units found in the Properties... and therefore corrected for the
stored pixel dimensions. Elsewhere (e.g. Gaussian Blur 3D...) the units are
pixels, slices and time points – and so you are responsible for figuring out how to
compensate for di↵erent scales and units.
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12.4 Thresholding multidimensional data

When thresholding an image with more than 2 dimensions using the Threshold...
command, it is necessary to choose whether the threshold should be determined
from the histogram of the entire stack, or from the currently-visible 2D slice only.
If the latter, you will also be asked whether the same threshold should be used for
every slice, or if it should be calculated anew for each slice based upon the slice
histogram. In some circumstances, these choices can have a very large impact
upon the result.

Question 12.2
When you threshold a stack, you have an option to choose Stack Histogram.
Then, when you choose Apply you are asked if you want to Calculate

Threshold for Each Image. What di↵erence do you expect these two options
to make, and what combinations would you use for:

1. a stack consisting of 2D images from di↵erent colour channels

2. a z-stack

3. a time series

Note: Have a look at what happens when you click Auto while scrolling
through one channel of the stack File ! Mitosis (26 MB, 5D Stack), with
and without Stack Histogram selected. You will have to split the channels
for this because ImageJ currently refuses to threshold multichannel images
with extra dimensions (which helps avoid some confusion). Dark Background

should always be selected here. Solution

12.5 Measurements in 3D data

ImageJ has good support for making measurements in 2D, particularly the
Measure and Analyze Particles... commands. The latter can happily handle
3D images, but only by creating and measuring 2D ROIs independently on each
slice. Alternatively, Image ! Stacks ! Plot Z-axis Profile is like applying
Measure to each slice independently, making measurements either over the entire
image or any ROI. It will also plot the mean pixel values, but even if you do
not particularly want this the command can still be useful. However, if single
measurements should be made for individual objects that extend across multiple
slices, neither of these options would be enough.
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Practical 12.1
Suppose you have a cell, nucleus or some
other large 3D structure in a z -stack,
and you want to draw the smallest
2D ROI that completely contains it on
every slice. An example is shown on
the right for the green structure in the
Confocal Series sample image.

How would you create such a ROI, and be confident that it is large enough for
all slices? Solution

Practical 12.2

When I create a ROI on the sample im-
age Confocal Series and run Plot Z-axis

Profile, I get a strangely spikey result (shown
right). How could this be explained?

(I used Fiji/ImageJ 1.46k. This behaviour has been corrected since then.)

Solution

12.5.1 Histograms & threshold clipping

One way to measure in 3D is to use the Histogram command and specify that the
entire stack should be included – this provides some basic statistics, including the
total number, mean, minimum, maximum and standard deviation of the pixels1.
This will respect the boundaries of a 2D ROI if one has been drawn.

This is a start, but it will not adjust to changes in the object boundary on each
2D plane. A better approach could be to use Image ! Adjust ! Threshold...

to set a threshold that identifies the object – but do not press Apply to generate
a binary image. Rather, under Analyze ! Set Measurements... select Limit
to threshold. Then when you compute the stack histogram (or press Measure
for 2D) only above-threshold pixels will be included in the statistics. Just be sure
to reset Limit to threshold later.

Question 12.3
How can you translate the total number of pixels in an object into its volume,
e.g. in µm3? Give some thought to how accurate your method will be.

Solution

1Be careful! If you have multiple channels, these should be split first.
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Using NaNs
I am not a fan of Limit to threshold, because I am likely to forget to reset it
afterwards and may subsequently measure the wrong things for days thereafter.

An alternative that I prefer is to set my threshold on a 32-bit copy of the image
I am working with, and then Apply the threshold using the Set Background

Pixels to NaN option. Then all below-threshold pixels will automatically be
excluded from any measurements I make on the result, since they are ‘no longer
numbers’ (see Section 9.4.1).

12.5.2 The 3D Objects Counter

Currently, the closest thing to Analyze Particles... for measuring connected
objects in 3D built-in to Fiji is the 3D Objects Counter (Analyze ! 3D Objects

Counter)2. Its settings (analogous to Set Measurements...) are under Analyze
! 3D OC Options. In addition to various measurements, it provides labelled
images as output, either of the entire objects or only their central pixels – optionally
with labels, or expanded to be more visible.

Find Connected Regions
Plugins ! Process ! Find Connected Regions is a command primarily
for creating labelled images from thresholded 3D data, which can also give the
total number of pixels per object. If the main thing you want is the labelled
image without many more results, it may be faster than 3D Objects Counter.

Additional 3D tools
For working with 3D data, it may be very useful to download the ‘3D ImageJ
Suite’ from http://imagejdocu.tudor.lu/doku.php?id=plugin:stacks:3d_

ij_suite:start. This not only includes a range of fast filters and commands
for segmentation, but also a 3D version of the ROI Manager.

While created for bone image analysis, BoneJ (http://bonej.org/) also
includes some components that are useful for general applications – including
a fast 3D Particle Analyser (another alternative to the 3D Objects Counter)
and a tool to interpolate ROIs across image slices.

2See S Bolte and F P Cordelières. “A guided tour into subcellular colocalization analysis in
light microscopy.” In: Journal of microscopy 224.Pt 3 (Dec. 2006), pp. 213–32. issn: 0022-2720.
doi: 10.1111/j.1365-2818.2006.01706.x. url: http://www.ncbi.nlm.nih.gov/pubmed/

17210054
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Solutions

Question 12.1 If the percentage of saturated pixels is 0, then the minimum
and maximum pixel values throughout the image will be given the first and last
LUT colours respectively, with all other colours devoted to values in between.
This is sensitive to outliers, and often results in images that have poor contrast.
It is usually better to accept some small amount of visual saturation, in order to
give more LUT colours to the pixel values between the extremes.

Question 12.2 If Stack Histogram is checked, the thresholds are computed
from a histogram of all the pixels in the entire image stack; otherwise, the
histogram of only the currently-displayed image slice is used. BUT! If Calculate
Threshold for Each Image is chosen, then this is ignored: the threshold is
always determined by the selected automatic method using the histogram of the
corresponding slice only.

Therefore, the most sensible combinations of thresholding options to use
depend upon the type of data.

1. Colour channels – There is often no good reason to suppose the amount of
fluorescence in di↵erent colour channels will be similar, and so thresholds
should be calculated from each channel independently.

2. z-Stacks – It is normally a good idea to use the stack histogram with z-stacks.
If you do not, then your threshold will be a↵ected by whatever slice you
happen to be viewing at the time of thresholding – introducing a potentially
weird source of variability in the results. It is probably not a good idea to
calculate a new threshold for each slice, because this would lead to at least
something being detected on every slice. But in the outer slices there may
well only be blur and noise – in which case nothing should be detected!

3. Time series – In a time series, bleaching can sometimes cause the image
to darken over time. In such a case, using the stack histogram might cause
fewer pixels to exceed the threshold at later time points simply for this
reason, and recalculating the threshold for each image may be better. On the
other hand, if images were previously normalized somehow to compensate
for bleaching3, then the stack threshold might be preferable again. It’s
tricky.

There is one other implementation issue that needs attention. When Dark

Background is checked and an automated threshold is computed, then it is only
really the low threshold that matters – the high threshold is always set to the
maximum in the histogram to ensure that all brighter pixels are designated
‘foreground’ in the result. However, if not using Stack Histogram, then for

3See http://fiji.sc/wiki/index.php/Bleach_Correction
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non-8-bit images the histograms are calculated using the minimum and maximum
pixels on the slice, and consequently the high threshold cannot be higher than
this maximum value (look at how the high threshold value changes in Mitosis as
you compute auto thresholds for di↵erent slices). This means that any brighter
pixels will be outside the threshold range (and therefore ‘background’) if they
occur on a di↵erent slice. This can cause holes to appear in the brightest parts of
structures, and is probably not what you want. A similar situation occurs with
the low threshold when Dark Background is unchecked.

Practical 12.1 My strategy would be to create a z -projection (max intensity)
and then draw the ROI on this – or, preferably, create the ROI by thresholding
using Image ! Adjust ! Threshold and the Wand tool. This ROI can then
be transfered over to the original stack, either via the ROI Manager or Edit !
Selection ! Restore Selection.

Practical 12.2 Confocal Series has two channels: it is a hyperstack (4D).
But Plot Z-axis Profile ignored this previously, and treated it like a stack (3D).
Therefore measurements from each channel were interleaved with one another.
Splitting the channels first, then calculating the profiles separately would overcome
this.

Question 12.3 You could treat each pixel as a rectangular cuboid, with a
volume equal to pixel width⇥ pixel height⇥ voxel depth (as given in Image !
Properties...). Then multiply this by the number of pixels within the object.
This is what the 3D Objects Counter plugin does when measuring volumes
(Section 12.5.2).

Whenever you want to compare object sizes across images acquired with
di↵erent pixel sizes, this is certainly better than just taking the raw pixel counts
as measures of volume. However, it is unlikely to be very accurate – and volume
measurements obtained this way should not be trusted too much, especially when
dealing with very small sizes. They are also likely to be quite sensitive to z -stack
spacing.
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Writing macros

Chapter outline

• Processing & analysis steps can be automated by writing macros

• Straightforward macros can be produced without any programming
using the Macro Recorder

• Recorded macros can be modified to make them more robust &
suitable for a wider range of images

13.1 Introduction

It is one thing to figure out steps that enable you to analyze an image, it is
quite another to implement these steps for several – and perhaps many – di↵erent
images. Without automation, the analysis might never happen; all the mouse-
moving and clicking would just be too time-consuming, error-prone or boring, and
momentarily lapses in concentration could require starting over again.

Even a brief e↵ort to understand how to automate analysis can produce vast,
long-lasting improvements in personal productivity and sanity by reducing the
time spent on mind-numbingly repetitive tasks. In some straightforward cases (e.g.
converting file formats, applying projections or filters, or making measurements
across entire images), this can already be done in ImageJ using the commands
in the Process ! Batch ! submenu and no programming whatsoever. But it
is also very worthwhile to get some experience in producing macros, scripts or
plugins, after which you can add your own new commands to the menus and carry
out customized algorithms with a single click of a button or press of a key.

Macros are basically sequences of commands, written in some programming
language (here ImageJ’s own macro language), which can be run automatically
to make processing faster and easier. This chapter is far from an extensive
introduction to macro-writing, but rather aims to introduce the main ideas quickly
using a worked example. Should you wish to delve deeper into the subject, there is
an introduction to the language on the ImageJ website1, and a very helpful tutorial
on the Fiji wiki2, while the list of built-in macro functions is an indispensable
reference3. Once confident with macros, the next step would be to enter the

1http://imagej.net/developer/macro/macros.html
2http://fiji.sc/wiki/index.php/Introduction_into_Macro_Programming
3http://imagej.net/developer/macro/functions.html

117



118 CHAPTER 13. WRITING MACROS

world of scripts and plugins. These can be somewhat more di�cult to learn,
but reward the e↵ort with the ability to do more complicated things. Links to
help with this are available on the developer section of the ImageJ website at
http://imagej.net/developer.

Finally, although it is possible to use ImageJ rather than Fiji to create macros,
Fiji’s script editor makes the process much easier by colouring text according to
what it does, so I will assume you are using this.

13.2 A Di↵erence of Gaussians filter

Di↵erence of Gaussians (DoG) filtering was introduced in Chapter 10.4.3 as a
technique to enhance the appearance of small spots and edges in an image. It is
quite straightforward, but time consuming to apply manually very often – and
you might need to experiment with the filter sizes a bit to get good results. This
makes it an excellent candidate for a macro.

Recording a macro

Rather than diving into writing the code, the fastest way to get started is to have
ImageJ do most of the hard work itself. Then you only need to fix up the result.
The procedure is as follows:

• Open up an example (2D, non-colour) image to use, ideally one including
small spot-like or otherwise round objects. I am using the image found under
File ! Open Samples ! HeLa Cells, after extracting the red channel
only.

• Start the Macro Recorder by choosing Plugins ! Macros ! Record.
Make sure that Record: Macro appears at the top of this window (see the
drop-down list). Every subsequent click you make that has a corresponding
macro command will result in the command being added to the window.

• Convert your image to 32-bit. This will reduce inaccuracies due to rounding
whenever the filtering is applied.

• Duplicate the image.

• Apply Process ! Filters...! Gaussian Blur... to one of the images
(it does not matter if it is the original or the duplicate), using a small sigma
(e.g. 1) for noise suppression.

• Apply Gaussian Blur... to the other image, using a larger sigma (e.g. 2).

• Run Process ! Image Calculator... and subtract the second filtered
image from the first. This produces the ‘di↵erence of Gaussians’ filtered
image, in which small features should appear prominently and the
background is removed.
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• Press the Create button on the macro recorder. This should cause a text
file containing the recorded macro to be opened in Fiji’s Script Editor

(which you can find under Plugins ! Scripting ! Script Editor).

• Save the text file in the plugins folder of Fiji. The file name should end
with the extension .ijm (for ‘ImageJ Macro’), and include an underscore
character somewhere within it.

Now you have a macro! To try it out, close Fiji completely, then start it again
and reopen the original image you used. There should be a new command in the
Plugins menu for the macro you have just created4. Running this new command
on your example image should give you the same result as when you applied the
commands manually. (If not, keep reading anyway and the following steps should
fix it.)

Cleaning up

Now reopen your macro in the Script Editor. It should look something like mine:

run("Find Commands...");

run("32-bit");

//run("Brightness/Contrast...");

run("Enhance Contrast", "saturated=0.35");

run("Duplicate...", "title=C1-hela-cells-1.tif");

run("Find Commands...");

run("Gaussian Blur...", "sigma=1");

selectWindow("C1-hela-cells.tif");

run("Find Commands...");

run("Gaussian Blur...", "sigma=2");

run("Find Commands...");

imageCalculator("Subtract create", "C1-hela-cells-1.tif",

"C1-hela-cells.tif");

selectWindow("Result of C1-hela-cells-1.tif");

Your code is probably not identical, and may well be better. One problem with
automatically generated macros is that they contain (almost) everything – often
including a lot of errant clicking, or other non-essential steps. For example, I am
particularly fond of pressing L to bring up the Find Commands box, but these
references should be removed from the macro. I also changed the contrast of an
image, but this was only to look at it – and it does not need to be included in the
macro. After deleting the unnecessary lines, I get:

run("32-bit");

run("Duplicate...", "title=C1-hela-cells-1.tif");

run("Gaussian Blur...", "sigma=1");

4Without an underscore in the file name, the command will not be added to the menu.
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selectWindow("C1-hela-cells.tif");

run("Gaussian Blur...", "sigma=2");

imageCalculator("Subtract create", "C1-hela-cells-1.tif",

"C1-hela-cells.tif");

Understanding the code

You can most likely work out what the macro is doing, if not necessarily the
terminology, just by looking at it. Taking the first line, run is a function that tells
ImageJ to execute a command, while "32-bit" is a piece of text (called a string)
that tells it which command. Functions always tell ImageJ to do something or
give you information, and can be recognized because they are normally followed
by parentheses. Strings are recognizable both because they are inside double
inverted commas and the script editor shows them in a di↵erent colour. Notice
also that each line needs to end with a semicolon so that the macro interpreter
knows the line is over.

Functions can require di↵erent numbers of pieces of information to do their
work. At a minimum, run needs to know the name of the command and the
image to which it should be applied – which here is taken to be whichever image is
currently active, i.e. the one that was selected most recently. But if the command
being used by run requires extra information of its own, then this is included as
an extra string. Therefore

run("Duplicate...", "title=C1-hela-cells-1.tif");

informs the Duplicate command that the image it creates should be called
C1-hela-cells-1.tif, and

run("Gaussian Blur...", "sigma=1");}

ensures that Gaussian Blur... is executed with a sigma value of 1.
selectWindow is another function, added to the macro whenever you click

on a particular window to activate it, and which requires the name of the image
window to make active. From this you can see that my example file name was
C1-hela-cells.tif. Without this line, the duplicated image would be filtered
twice – and the original not at all.

Finally, the Image Calculator command is special enough to get its own
function in the macro language, imageCalculator. The first string it is given
tells it both what sort of calculation to do, and that it should create a new image
for the result – rather than replacing one of the existing images. The next two
strings give it the titles of the images needed for the calculation.

Removing title dependancies

The fact that the original image title appears in the above macro is a problem: if
you try to run it on another image, you are likely to find that it does not work
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because selectWindow cannot find what it is looking for. So the next step is to
remove this title dependency so that the macro can be applied to any (2D) image.

There are two ways to go about this. One is to insert a line that tells the
macro the title of the image being processed at the start, e.g.

titleOrig = getTitle();

where getTitle() is an example of a function that asks for information. The
result is then stored as a variable, so that any time we type titleOrig later this
will be replaced by the string corresponding to the original title5. Then we just
find anywhere the title appears and replace the text with our new variable name,
i.e. in this case by writing

selectWindow(titleOrig);

If we do this, the window we want will probably be activated as required.
However, it is possible that we have two images open at the same time with
identical titles – in which case it is not clear which window should be selected, and
so the results could be unpredictable. A safer approach is to get a reference to
the image ID rather than its title. The ID is a number that should be unique for
each image, which is useful for ImageJ internally but which we do not normally
care about unless we are programming. Using IDs, the updated macro code then
becomes:

idOrig = getImageID();

run("32-bit");

run("Duplicate...", "title=[My duplicated image]");

idDuplicate = getImageID();

run("Gaussian Blur...", "sigma=1");

selectImage(idOrig);

run("Gaussian Blur...", "sigma=2");

imageCalculator("Subtract create", idDuplicate, idOrig);

We had to change selectWindow to selectImage for the IDs to work. I also
changed the title of the duplicated image to something more meaninglessly general
– which required square brackets, because it includes spaces that would otherwise
mess things up6. Also, because the duplicated image will be active immediately
after it was created, I ask ImageJ for its ID at that point. This lets me then
pass the two IDs (rather than titles) to the imageCalculator command when
necessary.

5There is nothing special about titleOrig – this text can be changed to any variable name
you like, so long as it is one word and does not contain special characters.

6In ImageJ’s macro language, spaces in the string telling a command what to do are used to
indicate that a separate piece of information is being given. So titles or file names that require
spaces need to be put inside square brackets.
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Adding comments

Whenever macros become more complicated, it can be hard to remember exactly
what all the parts do and why. It is then a very good idea to add in some extra
notes and explanations. This is done by prefixing a line with //, after which we
can write whatever we like because the macro interpreter will ignore it. These
extra notes are called comments, and I will add them from now on.

Customizing sigma values

By changing the size of the Gaussian filters, the macro can be tailored to detecting
structures of di↵erent sizes. It would be relatively easy to find the Gaussian Blur

lines and change the sigma values accordingly here, but adjusting settings like
this in longer, more complex macros can be awkward. In such cases, it is helpful
to extract the settings you might wish to change and include them at the start of
the macro.

To do this here, insert the following lines at the very beginning:

// Store the Gaussian sigma values -

// sigma1 should be less than sigma2

sigma1 = 1.5;

sigma2 = 2;

Then, update the later commands to:

run("Gaussian Blur...", "sigma="+sigma1);

selectImage(idOrig);

run("Gaussian Blur...", "sigma="+sigma2);

This creates two new variables, which represent the sigma values to use. Now any
time you want to change sigma1 or sigma2 you do not need to hunt through the
macro for the correct lines: you can just update the lines at the top7.

Adding interactivity

Usually I would stop at this point. Still, you might wish to share your macro with
someone lacking your macro modification skills, in which case it would be useful
to give this person a dialog box into which they could type the Gaussian sigma
values that they wanted. An easy way to do this is to remove the sigma value
information from the run command lines, giving

run("Gaussian Blur...");

Since Gaussian Blur will not then know what size of filters to use, it will ask.
The disadvantage of this is that the user is prompted to enter sigma values at two
di↵erent times as the macro runs, which is slightly more annoying than necessary.

7Note that + is used to join multiple strings into one, converting numbers into strings as
needed. Therefore in this case the lines "sigma="+"2" and "sigma="+sigma2 would each give us
the same result: one longer string with the extra part appended at the end, i.e. "sigma=2".
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The alternative is to create a dialog box that asks for all the required settings
in one go. To do this, update the beginning of your macro to include something
like the following:

Dialog.create("Choose filter sizes for DoG filtering");

Dialog.addNumber("Gaussian sigma 1", 1);

Dialog.addNumber("Gaussian sigma 2", 2);

Dialog.show();

sigma1 = Dialog.getNumber();

sigma2 = Dialog.getNumber();

The first line generates a dialog box with the title you specify. Each of the next
two lines state that the required user input should be a number with the specified
prompts and default values. The other lines simply show the dialog box and then
read out whatever the user typed and puts it into variables. This is documented
in ImageJ’s list of built-in macro functions.

Suggested improvements

You should now have a macro that does something vaguely useful, and which will
work on most 2D images. It could nevertheless still be enhanced in many ways.
For example,

• You could close any unwanted images (e.g. the original and its duplicate)
by selecting their IDs, and then inserting close(); commands afterwards.

• You could make the macro work on entire image stacks. If you want it to
process each plane separately, this involves only inserting the words stack
and duplicate in several places – by recording a new macro in the same
way, but using a stack as your example image, you can see where to do this.
If you want the filtering to be applied in 3D, you can use the Gaussian

Blur 3D... command instead of Gaussian Blur...

• You could create a log of which images you have processed, possibly including
the settings used. The log is output by including a log(text); line, where
text is some string you have created, e.g. text = "Image name: "+

getTitle().

• More impressively, you could turn the macro into a full spot-detector by
thresholding the DoG filtered image, and then running the Analyze !
Analyze Particles... command. If you want to measure original spot in-
tensities, you should remember to go to Analyze ! Set Measurements...

to make sure the measurements are redirected to the original image – which
you should possibly have duplicated at the beginning, since otherwise it will
have been Gaussian filtered by the time your macro reaches the measurement
stage.
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In any case, the process of developing a macro is usually the same:

1. Record a macro that does basically the right thing

2. Remove all the superfluous lines (contrast adjustment, errant clicking etc.)

3. Replace the image titles with image ID references

4. Add comments to describe what the macro is doing

5. Track down bugs and make improvements



Part III

Fluorescence images
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From photons to pixels

Chapter outline

• The pixel values in a fluorescence image depend upon numbers
of detected photons

• Blur & noise are inevitable

14.1 The big picture of fluorescence imaging

Images in fluorescence microscopy are formed by detecting light – and such
small amounts of light that it can be thought of in terms of individual photons.
The photons are emitted from fluorescent molecules within the sample being
imaged. Sometimes these photon-emitting molecules may be the very things we
are interested in studying, but often they have only been introduced to the sample
because they have the helpful property of fluorescing when in the presence of the
(otherwise non-fluorescent) molecules or structures we would really like to see.

Either way, the most that the image can tell us is how much light was emitted
from any particular point. From this information we make our interpretations,
such as about the presence of absence of some feature, about the size and shape
of a structure, or about the relative concentration of a molecule. But in no case
are we seeing the feature, structure or molecule directly in the recorded images:
we only have measurements of numbers of photons we could detect.

We will not give much attention here to what any particular number of photons
emanating from a sample really indicates from a biological point of view – this
would depend too much upon the design and details of the experiment, i.e. on
the cells, stains and other substances involved. We can, however, often make
general assumptions, such as that if we were to see (on average) twice as many
photons originating from one region as from another, the number of fluorescing
molecules must be around twice as high in the first region1. But before we can
worry about such things, we first need to concentrate upon how accurately we
can even determine the number and origins of photons being emitted from the
sample, given the limited quality of the images we can actually record.
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(a) The basic setup (b) The specimen
is illuminated; fluo-
rophores become ex-
cited

(c) Light is emitted; some
enters the objective lens and
is detected

Figure 14.1: A (very) simplified diagram showing the steps of image formation in
fluorescence microscopy.

14.1.1 Recording images

Once a specimen has been prepared and is waiting underneath the microscope,
the basic process of recording a fluorescence image comprises four main steps
(summarized in Figure 14.1):

1. Fluorophore excitation. The fluorescent molecules (fluorophores) first need
to be raised into an excited state. This happens upon the absorption of
a photon, the energy (i.e. wavelength) of which should fall into a range
specific to the fluorophore itself. This is carried out by illuminating the
specimen, e.g. with a lamp or laser.

2. Photon emission. When returning to its ground state, each fluorophore may
emit a photon – this time with a lower energy (i.e. longer wavelength) than
the photon previously absorbed.

3. Photon detection. Most emitted photons can be thought of, rather informally,
as ‘shooting o↵ in the wrong direction’, in which case we have no hope of
detecting them. But a proportion of the light should enter the objective
lens of the microscope and be focussed towards a detector. When a photon
strikes the detector, it is registered as a ‘hit’ by the release of an electron
(when we are lucky; detectors are imperfect so this might not occur, meaning
the photon is e↵ectively lost).

4. Quantification & storage. After fixed time intervals, the charges of the
electrons produced by photons striking the detector are quantified, and from

1This assumes a linear relationship, which does not always hold (e.g. if there is dye saturation,
or high laser powers are used for illumination).
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!

(a) Ideal imaging – a direct view of ‘reality’

! !

(b) More realistic imaging – a blurred and noisy view

Figure 14.2: The di↵erence between what we might wish to image, and what we actually
can image. In both cases (a and b), the ‘real’ scene is shown on the left. Ideally, the
small coloured spots in reality would directly map to coloured spots of a related size and
separation in the image (a). However, the light emitted from these spots would actually
end up producing larger objects in the image, which can then blur together (b, centre).
Noise is further added to this blurriness to give us the best image we can really record (b,
right).

these quantifications pixel values are determined. A larger charge indicates
more photons, which translates into a higher pixel value.

14.1.2 Errors and imprecisions

From the above summary, it is clear that we are quite some distance away from
knowing exactly how much light is emitted from the specimen: most photons do
not reach the detector, and many that do are still not registered. But since we
can expect to always lose track of a similar proportion of emitted light – perhaps
90% – this does not matter much: we can expect all parts of the image to be
similarly a↵ected, so relative di↵erences in brightness would still be reflected in
our pixel values. However, there are two more critical ways in which the images
we can record are less good than the images we would like:

1. Uncertainty in space. Ideally, all light originating from a particular point
in the specimen would strike the detector in exactly the same place, and
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therefore end up contributing to exactly the same pixel. In practice, however,
the light beginning from one point cannot be focused back to a single point on
the detector. Consequently, it can end up being spread over several pixels.
The end result is that the image is blurred.

2. Uncertainty in brightness. When an image is blurry we would also expect it
to be smooth, but this is not usually what we get in fluorescence microscopy.
Rather, there are seemingly random variations in brightness everywhere
throughout the image: the noise. Some noise can come from imprecisions
when determining the charge of small clouds of electrons quickly. But, more
curiously, the emission of the photons is itself random, so that even if we
detected every photon perfectly we would still get noisy images.

The twin issues of blur and noise do not a↵ect all images equally. For example,
blur can cause us to misjudge the size of something by several hundred nanometres,
but if the thing we are measuring is much larger than this then the error may be
trivial. Also, if we are detecting many thousands of photons then the uncertainty
due to noise may be extremely small relative to the numbers involved. But very
often we are interested in measuring tiny structures in images containing only
tens of photons at their brightest points. In these cases, the e↵ects of blur and
noise cannot be ignored.
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Blur & the PSF

Chapter outline

• Measurements in fluorescence microscopy are a↵ected by blur

• Blur acts as a convolution with the microscope’s PSF

• The size of the PSF depends on the microscope type, light
wavelength & objective lens NA, & is on the order of hundreds of
nm

• In the focal plane, the PSF is an Airy pattern

• Spatial resolution is a measure of how close structures can be
distinguished. It is better in xy than along the z dimension.

15.1 Introduction

Microscopy images normally look blurry because light originating from one point
in the sample is not all detected at a single pixel: usually it is detected over
several pixels and z-slices. This is not simply because we cannot use perfect lenses;
rather, it is caused by a fundamental limit imposed by the nature of light. The
end result is as if the light that we detect is redistributed slightly throughout our
data (Figure 15.1).

This is important for three reasons:

1. Blur a↵ects the apparent size of structures

2. Blur a↵ects the apparent intensities (i.e. brightnesses) of structures

3. Blur (sometimes) a↵ects the apparent number of structures

Therefore, almost every measurement we might want to make can be a↵ected by
blurring to some degree.

That is the bad news about blur. The good news is that it is rather well
understood, and we can take some comfort that it is not random. In fact,
the main ideas have already been described in Chapter 10, because blurring in
fluorescence microscopy is mathematically described by a convolution involving
the microscope’s Point Spread Function (PSF). In other words, the PSF acts
like a linear filter applied to the perfect, sharp data we would like but can never
directly acquire.
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(a) Sharp (b) Blurred

Figure 15.1: Schematic diagram showing the e↵ects of blur. Think of the sand as photons,
and the height of the sandcastle as the intensity values of pixels (a greater height indicates
more photons, and thus a brighter pixel). The ideal data would be sharp and could
contain fine details (a), but after blurring it is not only harder to discriminate details, but
intensities in the brighter regions have been reduced and sizes increased (b). If we then
wish to determine the size or height of one of the sandcastle’s towers, for example, we need
to remember that any results we get by measuring (b) will di↵er from those we would
have got if we could have measured (a) itself. Note, however, that approximately the
same amount of signal (sand or photons) is present in both cases – only its arrangement
is di↵erent.

Previously, we saw how smoothing (e.g. mean or Gaussian) filters could
helpfully reduce noise, but as the filter size increased we would lose more and
more detail (Figure 10.14). At that time, we could choose the size and shapes
of filters ourselves, changing them arbitrarily by modifying coe�cients to get
the noise-reduction vs. lost-detail balance we liked best. But the microscope’s
blurring di↵ers in at least two important ways. Firstly, it is e↵ectively applied to
our data before noise gets involved, so o↵ers no noise-reduction benefits. Secondly,
because it occurs before we ever set our eyes on our images, the size and shape of
the filter (i.e. the PSF) used are only indirectly (and in a very limited way) under
our control. It would therefore be much nicer just to dispense with the blurring
completely since it o↵ers no real help, but unfortunately light conspires to make
this not an option and we just need to cope with it.

The purpose of this chapter is to o↵er a practical introduction to why
the blurring occurs, what a widefield microscope’s PSF looks like, and why
all this matters. Detailed optics and threatening integrals are not included,
although several equations make appearances. Fortunately for the mathematically
unenthusiastic, these are both short and useful.

15.2 Blur & convolution

As stated above, the fundamental cause of blur is that light originating from an
infinitesimally small point cannot then be detected at a similar point, no matter
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(a) Entire image (b) Detail of (a) (c) Some blur (d) A lot of blur

Figure 15.2: Images can be viewed as composed of small points (b), even if these points
are not visible without high magnification (a). This gives us a useful way to understand
what has happened in a blurred image: each point has simply been replaced by a more
di↵use blob, the PSF. Images appear more or less blurred depending upon how large the
blobby PSFs are (c) and (d).

how great our lenses are. Rather, it ends up being focused to some larger volume
known as the PSF, which has a minimum size dependent upon both the light’s
wavelength and the lens being used (Section 15.4.1).

This becomes more practically relevant if we consider that any fluorescing
sample can be viewed as composed of many similar, exceedingly small light-
emitting points – you may think of the fluorophores. Our image would ideally
then include individual points too, digitized into pixels with values proportional
to the emitted light. But what we get instead is an image in which every point has
been replaced by its PSF, scaled according to the point’s brightness. Where these
PSFs overlap, the detected light intensities are simply added together. Exactly
how bad this looks depends upon the size of the PSF (Figure 15.2).

Section 10.2.5 gave one description of convolution as replacing each pixel in
an image with a scaled filter – which is just the same process. Therefore it is no
coincidence that applying a Gaussian filter to an image makes it look similarly
blurry. Because every point is blurred in the same way (at least in the ideal
case; extra aberrations can cause some variations), if we know the PSF we can
characterize the blur throughout the entire image – and thereby make inferences
about how blurring will impact upon anything we measure.

15.3 The shape of the PSF

We can gain an initial impression of a microscope’s PSF by recording a z-stack of a
small, fluorescent bead, which represents an ideal light-emitting point. Figure 15.3a
shows that, for a widefield microscope, the bead appears like a bright blob when
it is in focus. More curiously, when viewed from the side (xz or yz), it has a
somewhat hourglass-like appearance – albeit with some extra patterns. This exact
shape is well enough understood that PSFs can also be generated theoretically
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(a) Bead (linear) (b) Bead (gamma) (c) Theoretical PSF (linear)

Figure 15.3: PSFs for a widefield microscope. (a) and (b) are from z-stacks acquired of
a small fluorescent bead, displayed using linear contrast and after applying a gamma
transform to make fainter details easier to discern (see Section 8.2.3). (c) shows a
theoretical PSF for a similar microscope. It di↵ers in appearance partly because the
bead is not really an infinitesimally small point, and partly because the real microscope’s
objective lens is less than perfect. Nevertheless, the overall shapes are similar.

based upon the type of microscope and objective lenses used (c).

Generating PSFs
Plugins to create theoretical PSFs are available from

• http://www.optinav.com/Diffraction-PSF-3D.htm

• http://bigwww.epfl.ch/algorithms/psfgenerator/

In & out of focus

Figure 15.4 attempts to show that the hourglass aspect of the PSF is really
perfectly intuitive. When recording a z-stack of a light-emitting point, we would
prefer that the light ended up at a single pixel in a single slice. But the light itself
is oblivious to our wishes, and will cheerfully be detected if it happens to strike
a detector, no matter where that is. Therefore we should expect the light to be
detected across a small region only if the image is in-focus; otherwise it will be
more spread out to an extent that depends upon how far from the focal point it
is detected. From the side (xz or yz), this leads to an hourglass shape.

Question 15.1
In focus, a light-emitting point looks like a small, bright blob. Out of focus, it
is much less bright and extends over a wider area. However, how would you
expect the total amount of light to di↵er in a widefield image depending upon
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Figure 15.4: Simplified diagram to help visualize how a light-emitting point would be
imaged using a widefield microscope. Some of the light originating from the point is
captured by a lens. If you imagine the light then being directed towards a focal point, this
leads to an hourglass shape. If a detector is placed close to the focal point, the spot-like
image formed by the light striking the detector would be small and bright. However, if
the detector were positioned above or below this focal plane, the intensity of the spot
would decrease and its size would increase.

whether a plane is in-focus or not? In other words, would you expect more or
less light in the focal plane than in other planes above or below it? Solution

The appearance of interference

Figure 15.4 is pretty limited in what it shows: it does not begin to explain the
extra patterns of the PSF, which appear on each 2D plane as concentric rings
(Figure 15.5), nor why the PSF does not shrink to a single point in the focal plane.
These factors relate to the interference of light waves. While it is important to
know that the rings occur – if only to avoid ever misinterpreting them as extra
ring-like structures being really present in a sample – they have limited influence
upon any analysis because the central region of the PSF is overwhelmingly brighter.
Therefore for our purposes they can mostly be disregarded.

The Airy disk

Finally, the PSF in the focal plane is important enough to deserve some attention,
since we tend to want to measure things where they are most in-focus. This entire
xy plane, including its interfering ripples, is called an Airy pattern, while the
bright central part alone is the Airy disk (Figure 15.6). In the best possible case,
when all the light in a 2D image comes from in-focus structures, it would already
have been blurred by a filter that looks like this.
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Figure 15.5: Ten slices from a z-stack acquired of a fluorescent bead, starting from
above and moving down to the focal plane. The same linear contrast settings have been
applied to each slice for easy comparison, although this causes the in-focus bead to appear
saturated since otherwise the rings would not be visible at all. Because the image is
(approximately) symmetrical along the z-axis, additional slices moving below the focal
plane would appear similar.

(a) George Biddell Airy
(1801–1892)

(b) Airy pattern (c) Surface plot of Airy pattern

Figure 15.6: George Biddell Airy and the Airy pattern. (a) During his schooldays, Airy
had been renowned for being skilled ‘in the construction of peashooters and other such
devices’ (see http://www-history.mcs.st-and.ac.uk/Biographies/Airy.html). The
rings surrounding the Airy disk have been likened to the ripples on a pond. Although the
rings phenomenon was already known, Airy wrote the first theoretical treatment of it in
1835 (http://en.wikipedia.org/wiki/Airy_disk). (b) An Airy pattern, viewed as an
image in which the contrast has been set to enhance the appearance of the outer rings
surrounding the Airy disk. (c) A surface plot of an Airy pattern, which shows that the
brightness is much higher within the central region when compared to the rings.
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(a) Airy disk (b) 2D Gaussian (c) Profile through the centre of the Airy
disk (black) and Gaussian fit (red)

Figure 15.7: Comparison of an Airy disk (taken from a theoretical PSF) and a Gaussian
of a similar size, using two psychedelic surface plots and a 1D cross-section. The Gaussian
is a very close match to the Airy disk.

The Airy disk should look familiar. If we ignore the little interfering ripples
around its edges, it can be very well approximated by a Gaussian function
(Figure 15.7). Therefore the blur of a microscope in 2D is similar to applying a
Gaussian filter, at least in the focal plane.

15.4 The size of the PSF

So much for appearances. To judge how the blurring will a↵ect what we can see
and measure, we need to know the size of the PSF – where smaller would be
preferable.

The size requires some defining: the PSF actually continues indefinitely, but
has extremely low values when far from its centre. One approach for characterizing
the Airy disk size is to consider its radius r

airy

as the distance from the centre to
the first minimum: the lowest point before the first of the outer ripples begins.
This is is given by:

r

airy

=
0.61�

NA
(15.1)

where � is the light wavelength and NA is the numerical aperture of the objective
lens1.

Question 15.2
According to Equation 15.1, what are the two variables we may be able to
control that influence the amount of blur in our images, and how must they be
changed (increased or decreased) for the images to have less blur? Solution

1Note that this is the limit of the Airy disk size, and assumes that the system is free of any
aberrations. In other words, this is the best that we can hope for: the Airy disk cannot be made
smaller simply by better focusing, although it could easily be made worse by a less-than-perfect
objective lens.
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(a) NA = 0.8 (b) NA = 1.0 (c) NA = 1.2

Figure 15.8: Examples of theoretical PSFs generated with di↵erent Numerical Apertures.

A comparable measurement to r

airy

between the centre and first minimum
along the z axis is:

z

min

=
2�⇥ ⌘

NA2 (15.2)

where ⌘ is the refractive index of the objective lens immersion medium (which is
a value related to the speed of light through that medium).

Question 15.3
Does the NA have more influence on blur in the xy plane, or along the z axis?

Solution

Numerical Aperture

The equations for the PSF size show that if
you can use an objective lens with a higher
NA, you can potentially reduce blur in an
image – especially along the z axis (Figure 15.8).
Unfortunately, one soon reaches another limit
in terms of what increasing the NA can achieve.
This can be seen from the equation used to
define it:

NA = ⌘ sin ✓ (15.3)

where ⌘ is again the refractive index of the immersion medium and ✓ is the
half-angle of the cone of light accepted by the objective (above). Because sin ✓
can never exceed 1, the NA can never exceed ⌘, which itself has fixed values
(e.g. around 1.0 for air, 1.34 for water, or 1.5 for oil). High NA lenses can
therefore reduce blur only to a limited degree.
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An important additional consideration is that the highest NAs are possible when
the immersion refractive index is high, but if this does not match the refractive
index of the medium surrounding the sample we get spherical aberration. This
is a phenomenon whereby the PSF becomes asymmetrical at increasing depth
and the blur becomes weirder. Therefore, matching the refractive indices of
the immersion and embedding media is often strongly preferable to using the
highest NA objective available: it is usually better to have a larger PSF than a
highly irregular one.

For an interactive tutorial on the e↵ect of using di↵erent NAs, see
http://www.microscopyu.com/tutorials/java/imageformation/airyna/index.html

Question 15.4
Convince yourself that z

min

will be considerably higher than r

airy

using one of
the following methods:

• Put an example refractive index (e.g. ⌘ = 1.34 for water), and some
reasonable values of � and the NA into Equations 15.1 and 15.2, and
compare the results

• Calculate the ratio z

min

/r

airy

and substitute in the equation for the NA.
This should reveal that the ratio is bigger than 1, i.e. that z

min

is larger.

What is the main implication of this observation, in terms of how separated
structures need to be along di↵erent dimensions for them still to be distinguish-
able? Solution

15.4.1 Spatial resolution

Spatial resolution is concerned with how close two structures can be while they are
still distinguishable. This is a somewhat subjective and fuzzy idea, but one way to
define it is by the Rayleigh Criterion, according to which two equally bright spots
are said to be resolved (i.e. distinguishable) if they are separated by the distances
calculated in Equations 15.1 and 15.2. If the spots are closer than this, they are
likely to be seen as one. In the in-focus plane, this is illustrated in Figure 15.9.

It should be kept in mind that the use of r
airy

and z

min

in the Rayleigh criterion
is somewhat arbitrary – and the e↵ects of brightness di↵erences, finite pixel sizes
and noise further complicate the situation, so that in practice a greater distance
may well be required for us to confidently distinguish structures. Nevertheless, the
Rayleigh criterion is helpful to give some idea of the scale of distances involved,
i.e. hundreds of nanometres when using visible light.



140 CHAPTER 15. BLUR & THE PSF

(a) 2 disk radii separation (b) 1 disk radius separation (c) 0.8 disk radii separation

Figure 15.9: Airy patterns separated by di↵erent distances, defined in terms of Airy
disk radii. The top row contains the patterns themselves, while the bottom row shows
fluorescence intensity profiles computed across the centres of the patterns. Two distinct
spots are clearly visible whenever separated by at least one disk radius, and there is a dip
apparent in the profile. However, if the separation is less than one radius, the contrast
rapidly decreases until only one structure is apparent.

Question 15.5
Suppose the diameter of the Airy disk is around 500 nm, and you are looking at
an image containing separate, well-spaced structures that are 2 nm, 20 nm and
200 nm in size. Assuming that you have imaged all of these exactly in focus
(after all, you are a brilliant microscopist), how will these structures appear in
the image?

Note: This is a particularly important question! Think of both the size and
brightness. Solution

15.4.2 Measuring PSFs & small structures

Knowing that the Airy disk resembles a Gaussian function is extremely useful,
because any time we see an Airy disk we can fit a 2D Gaussian to it. The
parameters of the function will then tell us the Gaussian’s centre exactly, which
corresponds to where the fluorescing structure really is – admittedly not with
complete accuracy, but potentially still beyond the accuracy of even the pixel
size (noise is the real limitation). This idea is fundamental to single-molecule
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localization techniques, including those in super-resolution microscopes like
STORM and PALM, but requires that PSFs are su�ciently well-spaced that
they do not interfere with one another and thereby ruin the fitting.

In ImageJ, we can somewhat approximate this localization by drawing a line
profile across the peak of a PSF and then running Analyze ! Tools ! Curve

Fitting.... There we can fit a 1D Gaussian function, for which the equation
used is

y = a+ (b� a) exp[�(x� c)2)/2d2] (15.4)

a is simply a background constant, b tells you the peak amplitude (i.e. the
maximum value of the Gaussian with the background subtracted), and c gives
the location of the peak along the profile line. But potentially the most useful
parameter here is d, which corresponds to the � value of a Gaussian filter. So if
you know this value for a PSF, you can approximate the same amount of blurring
with a Gaussian filter. This may come in useful in Chapter 18.



142 CHAPTER 15. BLUR & THE PSF

Solutions

Question 15.1 In a widefield image, every plane we can record contains in-focus
light along with all the detectable light from all other planes added together.
Therefore we should expect approximately the same total amount of light within
each plane of a z -stack – just di↵erently distributed. That is potentially a lot of
light in the ‘wrong’ place, especially if looking at a thick sample.

At least, this would be so for an infinitely-large detector, or a small, centred
sample. In practice, if the light originates from a location so out of focus that its
light spills over the side of the detector then this plane would contain less light.

Question 15.2 If the wavelength � is lower or the objective NA is higher, r
airy

decreases and we have less blur.

Question 15.3 Because of the squaring, the NA has a much greater influence
on blur along the z axis than in xy.

Question 15.4 The ratio is

z

min

r

airy

=
2�⇥ ⌘

NA2 ⇥ NA

0.61�
=

3.28⌘

NA
=

3.28

sin ✓
(15.5)

Therefore, even as sin ✓ becomes close to 1 (i.e. a very high NA objective is
used), the value of z

min

remains over 3 times larger than r

airy

– the z resolution
is much worse. When the NA is lower, the di↵erence is even more.

The main practical implication is that it is more likely you will be able to
distinguish structures that are separated from one another by a short distance
in xy than similarly separated in z. If you really need information along the
z-dimension more than anywhere else, maybe rotating your sample could help?

Question 15.5 Because even an infinitesimally small point cannot appear
smaller than the Airy disk in the recorded image, potentially all 3 of these
structures look the same! There may be some increase in size visible with the 200
nm structure (because it is larger than a single point, this makes it like many
di↵erent, slightly-shifted-but-mostly-overlapping Airy disks added together), but
it will certainly not appear 10 or 100 times larger than the others.

However, because smaller objects typically emit fewer photons, the smaller
structures may well appear less bright – if they are bright enough to be visible
at all. Therefore, at this scale accurate measurements of size are impossible
from (conventional, non-super-resolution) fluorescence microscopy images, but
the actual size may have some relationship with brightness.
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Noise

Chapter outline

• There are two main types of noise in fluorescence microscopy:
photon noise & read noise

• Photon noise is signal-dependent, varying throughout an image

• Read noise is signal-independent, & depends upon the detector

• Detecting more photons reduces the impact of both noise types

16.1 Introduction

We could reasonably expect that a noise-free microscopy image should look
pleasantly smooth, not least because the convolution with the PSF has a blurring
e↵ect that softens any sharp transitions. Yet in practice raw fluorescence
microscopy images are not smooth. They are always, to a greater or lesser
extent, corrupted by noise. This appears as a random ‘graininess’ throughout the
image, which is often so strong as to obscure details.

This chapter considers the nature of the noisiness, where it comes from and
what can be done about it. Before starting, it may be helpful to know the one
major lesson of this chapter for the working microscopist is simply:

If you want to reduce noise, you need to detect more photons

This general guidance applies in the overwhelming majority of cases when a good
quality microscope is functioning properly. Nevertheless, it may be helpful to
know a bit more detail about why – and what you might do if detecting more
photons is not feasible.

16.1.1 Background

In general, we can assume that noise in fluorescence microscopy images has the
following three characteristics, illustrated in Figure 16.1:

1. Noise is random – For any pixel, the noise is a random positive or negative
number added to the ‘true value’ the pixel should have.

143
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(a) Noisy image (b) Ideal image (c) Result of (a) - (b) (d) Histogram of (c)

Figure 16.1: Illustration of the di↵erence between a noisy image that we can record (a),
and the noise-free (but still blurred) image we would prefer (b). The ‘noise’ itself is what
would be left over if we subtracted one from the other (c). The histogram in (d) resembles
a normal (i.e. Gaussian) distribution and shows that the noise consists of positive and
negative values, with a mean of 0.

2. Noise is independent at each pixel – The value of the noise at any pixel does
not depend upon where the pixel is, or what the noise is at any other pixel.

3. Noise follows a particular distribution – Each noise value can be seen as a
random variable drawn from a particular distribution. If we have enough
noise values, their histogram would resemble a plot of the distribution1.

There are many di↵erent possible noise distributions, but we only need to
consider the Poisson and Gaussian cases. No matter which of these we have, the
most interesting distribution parameter for us is the standard deviation. Assuming
everything else stays the same, if the standard deviation of the noise is higher
then the image looks worse (Figure 16.2).

The reason we will consider two distributions is that there are two main types
of noise for us to worry about:

1. Photon noise, from the emission (and detection) of the light itself. This
follows a Poisson distribution, for which the standard deviation changes with
the local image brightness.

2. Read noise, arising from inaccuracies in quantifying numbers of detected
photons. This follows a Gaussian distribution, for which the standard
deviation stays the same throughout the image.

Therefore the noise in the image is really the result of adding two2 separate
random components together. In other words, to get the value of any pixel P

1Specifically its probability density or mass function – which for a Gaussian distribution is
the familiar bell curve.

2Actually more. But the two mentioned here are usually by far the most significant, and it
does not matter to our model at all if they contain various other sub-components. The important
fact remains that there is some noise that varies throughout the image, and some that does not.
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(a) Std. dev. 5 (b) Std. dev. 10 (c) Std. dev. 20

Figure 16.2: Gaussian noise with di↵erent standard deviations. (Top) Noise values only,
shown as images (with contrast adjusted) and histograms. (Bottom) Noise values added
to an otherwise noise-free image, along with the resulting histograms. Noise with a higher
standard deviation has a worse e↵ect when added to an image.
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you need to calculate the sum of the ‘true’ (noise-free) value T , a random photon
noise value N

p

, and a random read noise value N

r

, i.e.

P = T +N

p

+N

r

(16.1)

Finally, some useful maths: suppose we add two random noisy values together.
Both are independent and drawn from distributions (Gaussian or Poisson) with
standard deviations �1 and �2. The result is a third random value, drawn from
a distribution with a standard deviation

p
�1 + �2. On the other hand, if we

multiply a noisy value from a distribution with a standard deviation �1 by k, the
result is noise from a distribution with a standard deviation k�1.

These are all my most important noise facts, upon which the rest of this chapter
is built. We will begin with Gaussian noise because it is easier to work with,
found in many applications, and widely studied in the image processing literature.
However, in most fluorescence images photon noise is the more important factor.

16.2 Gaussian noise

Gaussian noise is a common problem in fluorescence images acquired using a
CCD camera (see Chapter 17). It arises at the stage of quantifying the number of
photons detected for each pixel. Quantifying photons is hard to do with complete
precision, and the result is likely to be wrong by few photons. The error is the
read noise.

Read noise typically follows a Gaussian distribution and has a mean of zero:
this implies there is an equal likelihood of over or underestimating the number
of photons. Furthermore, according to the properties of Gaussian distributions,
we should expect around 68% of measurements to be ± 1 standard deviation
from the true, read-noise-free value. If a detector has a low read noise standard
deviation this is then a good thing.

16.2.1 Signal-to-Noise Ratio (SNR)

Read noise is said to be signal independent : its standard deviation is constant,
and does not depend upon how many photons are being quantified. However, the
extent to which read noise is a problem probably does depend upon the number of
photons. For example, if we have detected 20 photons, a noise standard deviation
of 10 photons is huge; if we have detected 10 000 photons, it is likely not so
important.

A better way to assess the noisiness of an image is then the ratio of the
interesting part of each pixel (called the signal, which is here what we would
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ideally detect in terms of photons) to the noise standard deviation, which together
is known as the Signal-to-Noise Ratio3:

SNR =
Signal

Noise standard deviation
(16.2)

Question 16.1
Calculate the SNR in the following cases:

• We detect 10 photons, read noise standard deviation 1 photon

• We detect 100 photons, read noise standard deviation 10 photons

• We detect 1000 photons, read noise standard deviation 10 photons

For the purposes of this question, you should assume that read noise is the
only noise present (ignore photon noise).

Solution

16.2.2 Gaussian noise simulations

I find the best way to learn about noise is by creating simulation images, and
exploring their properties through making and testing predictions. Process !
Noise ! Add Specified Noise... will add Gaussian noise with a standard
deviation of your choosing to any image. If you apply this to an empty 32-bit
image created using File ! New ! Image... you can see noise on its own.

Practical 16.1
Create an image containing only simulated Gaussian noise with a standard
deviation of approximately 3. Confirm using its histogram or the Measure

command that this standard deviation is correct.

Now add to this more Gaussian noise with a standard deviation of 4. Keeping
in mind the end of Section 16.1.1, what do you expect the standard deviation
of the result to be? Solution

Question 16.2
gauss noise 1.tif and gauss noise 2.tif are two images containing Gaus-

3This is one definition of SNR. Many other definitions appear in the literature, leading to
di↵erent values. The fact that any interesting image will vary in brightness in di↵erent places,
the SNR is not necessarily the same at all pixels – therefore computing it in practice involves
coming up with some summary measurement for the whole image. This can be approached
di↵erently, but the general principle is always to compare how much noise we have relative to
interesting things: higher is better.
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(a) Original image (b) Averaging 2 adjacent pixels (c) Averaging 9 adjacent pixels

Figure 16.3: Noise reduction by averaging adjacent pixels.

sian noise with standard deviations of 5. Estimate (and optionally test with
Image Calculator... and Measure), what the standard deviations will be:

1. When you add both images together

2. When you subtract gauss noise 2.tif from gauss noise 1.tif

3. When you subtract gauss noise 1.tif from gauss noise 2.tif

4. When you average both images together

5. When you add an image to itself

Solution

16.2.3 Averaging noise

Section 16.1.1 stated how to calculate the new standard deviation if noisy pixels
are added together (i.e. it is the square root of the sum of the original variances).
If the original standard deviations are the same, the result is always something
higher. But if the pixels are averaged, then the resulting noise standard deviation
is lower. This implies that if we were to average two independent noisy images of
the same scene with similar SNRs, we would get a result that contains less noise,
i.e. a higher SNR. This is the idea underlying our use of linear filters to reduce
noise in Chapter 10, except that rather than using two images we computed our
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(a) Std. dev. 5 (b) Std. dev. 10 (c) Std. dev. 20

Figure 16.4: Images and histograms from Figure 16.2 after replacing each pixel with the
mean of it and its immediate neighbours (a 3⇥ 3 mean filter). The standard deviation of
the noise has decreased in all cases. In the noisest example (c) the final image may not
look brilliant, but the peaks in its histogram are clearly more separated when compared
to Figure 16.2c, suggesting it could be thresholded more e↵ectively (see Figure 9.4). It is
not always the most aesthetically pleasing image that is the best for analysis.
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(a) Siméon Denis Poisson
(1781–1840)
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(b) Poisson distribution

Figure 16.5: Siméon Denis Poisson and his distribution. (a) Poisson is said to have
been extremely clumsy and uncoordinated with his hands. This contributed to him
giving up an apprenticeship as a surgeon and entering mathematics, where the problem
was less debilitating – although apparently this meant his diagrams tended not to very
well drawn (see http://www-history.mcs.st-andrews.ac.uk/history/Biographies/
Poisson.html). (b) The ‘Probability Mass Function’ of the Poisson distribution for
several di↵erent values of �. This allows one to see for any ‘true signal’ � the probability
of actually counting any actual value k. Although it is more likely that one will count
exactly k = � than any other possible k, as � increases the probability of getting precisely
this value becomes smaller and smaller.

averages by taking other pixels from within the same image (Figures 16.3 and
16.4).

Practical 16.2
Create another image containing simulated Gaussian noise with a standard
deviation of 30. What do you expect the standard deviation to be after applying
a 3 ⇥ 3 mean filter (e.g. Process ! Smooth)? The calculation you need is
much the same as in the last practical, but with some extra scaling involved.

Now apply the filter to the same image a second time. Is the noise reduced by
a similar amount? How do you explain your answer? Solution

16.3 Poisson noise

In 1898, Ladislaus Bortkiewicz published a book entitled The Law of Small
Numbers. Among other things, it included a now-famous analysis of the number of
soldiers in di↵erent corps of the Prussian cavalry who were killed by being kicked
by a horse, measured over a 20-year period. Specifically, he showed that these



16.3. POISSON NOISE 151

numbers follows a Poisson distribution. This distribution, introduced by Siméon
Denis Poisson in 1838, gives the probability of an event happening a certain
number of times, given that we know (1) the average rate at which it occurs,
and (2) that all of its occurrences are independent. However, the usefulness of
the Poisson distribution extends far beyond gruesome military analysis to many,
quite di↵erent applications – including the probability of photon emission, which
is itself inherently random.

Suppose that, on average, a single photon will be emitted from some part of
a fluorescing sample within a particular time interval. The randomness entails
that we cannot say for sure what will happen on any one occasion when we
look; sometimes one photon will be emitted, sometimes none, sometimes two,
occasionally even more. What we are really interested in, therefore, is not precisely
how many photons are emitted, which varies, but rather the rate at which they
would be emitted under fixed conditions, which is a constant. The di↵erence
between the number of photons actually emitted and the true rate of emission
is the photon noise. The trouble is that keeping the conditions fixed might not
be possible: leaving us with the problem of trying to figure out rates from single,
noisy measurements.

16.3.1 Signal-dependent noise

Clearly, since it is a rate that we want, we could get that with more accuracy if
we averaged many observations – just like with Gaussian noise, averaging reduces
photon noise, so we can expect smoothing filters to work similarly for both noise
types.

The primary distinction between the noise types, however, is that Poisson
noise is signal-dependent, and does change according to the number of emitted (or
detected) photons. Fortunately, the relationship is simple: if the rate of photon
emission is �, the noise variance is also �, and the noise standard deviation is

p
�. Confusing �

� often represents
the mean of a

Poisson distribution –
it has nothing to do
with wavelengths

here

This is not really as unexpected as it might first seem (see Figure 16.6). It
can even be observed from a very close inspection of Figure 16.7, in which the
increased variability in the yeast cells causes their ghostly appearance even in an
image that ought to consist only of noise.

Question 16.3
The equation for the probability mass function of the Poisson distribution is:

P(�) ⇠ e

��

�

k

k!
(16.3)

where

• � is the mean rate of occurrence of the event (i.e. the noise-free photon
emission rate we want)
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Figure 16.6: ‘The standard deviation of
photon noise is equal to the square root
of the expected value’. To understand
this better, it may help to imagine
a fisherman, fishing many times at
the same location and under the same
conditions. If he catches 10 fish on
average, it would be quite reasonable to
catch 7 or 13 on any one day – while 20
would be exceptional. If, however, he
caught 100 on average, then it would be
unexceptional if he caught 90 or 110 on
a particular day, although catching only
10 would be strange (and presumably
disappointing). Intuitively, the range of
values that would be considered likely
is related to the expected value. If
nothing else, this imperfect analogy
may at least help remember the name
of the distribution that photon noise
follows.

(a) Original image (b) Gaussian filtered image (c) Result of (a) - (b)

Figure 16.7: A demonstration that Poisson noise changes throughout an image. (a) Part
of a spinning disk microscopy image of yeast cells. (b) A Gaussian filtered version of (a).
Gaussian filtering reduces the noise in an image by replacing each pixel with a weighted
average of neighbouring pixels (Section 10.4). (c) The di↵erence between the original and
filtered image contains the noise that the filtering removed. However, the locations of the
yeast cells are still visible in this ‘noise image’ as regions of increased variability. This is
partly an e↵ect of Poisson noise having made the noise standard deviation larger in the
brighter parts of the acquired image.
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• k is an actual number of occurrences for which we want to compute the
probability

• k! is the factorial of k (i.e. k ⇥ (k � 1)⇥ (k � 2)⇥ · · ·⇥ 1)

So if you know that the rate of photon emission is 0.5, for example, you can
put � = 0.5 into the equation and determine the probability of getting any
particular (integer) value of k photons. Applying this, the probability of not
detecting any photons (k = 0) is 0.6065, while the probability of detecting a
single photon (k = 1) is 0.3033.

Assuming the mean rate of photon emission is 1, use Equation 16.3 to calculate
the probability of actually detecting 5 (which, at 5 times the true rate, would
be an extremely inaccurate result). How common do you suppose it is to find
pixels that are so noisy in the background region of a dark image? Solution

16.3.2 The SNR for Poisson noise

If the standard deviation of noise was the only thing that mattered, this would
suggest that we are better not detecting much light: then photon noise is lower.
But the SNR is a much more reliable guide. For noise that follows a Poisson
distribution this is particularly easy to calculate. Substituting into Equation 16.2

SNR
Poiss

=
�p
�

=
p
� (16.4)

Therefore the SNR of photon noise is equal to the square root of the signal !
This means that as the average number of emitted (and thus detected) photons
increases, so too does the SNR. More photons ! a better SNR, directly leading
to the assertion

If you want to reduce photon noise,
you need to detect more photons

Why relativity matters: a simple example
The SNR increases with the number of photons, even though the noise standard
deviation increases too, because it is really relative di↵erences in the brightness
in parts of the image that we are interested in. Absolute numbers usually are of
very little importance – which is fortunate, since not all photons are detected.

Yet if you remain unconvinced that the noise variability can get bigger while
the situation gets better, the following specific example might help. Suppose
the true signal for a pixel is 4 photons. Assuming the actual measured value
is within one noise standard deviation of the proper result (which it will be,
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(a) Noise standard deviation (b) SNR (c) Relative noise

Figure 16.8: For Poisson noise, the standard deviation increases with the square root of
the signal. So does the SNR, with the result that plots (a) and (b) look identical. This
improvement in SNR despite the growing noise occurs because the signal is increasing
faster than the noise, and so the noise is relatively smaller. Plotting the relative noise
(1/SNR) shows this e↵ect (c).

about 68% of the time), one expects it to be in the range 2–6. The true signal
at another pixel is twice as strong – 8 photons – and, by the same argument,
one expects to measure a value in the range 5–11. The ranges for both pixels
overlap! With photon counts this low, even if the signal doubles in brightness,
we often cannot discern with confidence that the two pixels are even di↵erent at
all. In fact, it is quite possible that the second pixel gives a lower measurement
than the first.

On the other hand, suppose the true signal for the first pixel is 100 photons,
so we measure something in the range of 90–110. The second pixel, still twice
as bright, gives a measurement in the range 186–214. These ranges are larger,
but crucially they are not even close to overlapping, so it is very easy to tell
the pixels apart. Thus the noise standard deviation alone is not a very good
measure of how noisy an image is. The SNR is much more informative: the
simple rule is that higher is better. Or, if that still does not feel right, you can
turn it upside down and consider the noise-to-signal ratio (the relative noise),
in which case lower is better (Figure 16.8).

16.3.3 Poisson noise & detection

So why should you care that photon noise is signal-dependent?
One reason is that it can make features of identical sizes and brightnesses

easier or harder to detect in an image purely because of the local background.
This is illustrated in Figure 16.9. In general, if we want to see a fluorescence
increase of a fixed number of photons, this is easier to do if the background is very
dark. But if the fluorescence increase is defined relative to the background, it will
be much easier to identify if the background is high. Either way, when attempting
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(a) Seeing spots with the same absolute
brightness

(b) Seeing spots with the same relative
brightness

Figure 16.9: The signal-dependence of Poisson noise a↵ects how visible (and therefore
detectable) structures are in an image. (a) Six spots of the same absolute brightness are
added to an image with a linearly increasing background (top) and Poisson noise is added
(bottom). Because the noise variability becomes higher as the background increases, only
the spots in the darkest part of the image can be clearly seen in the profile. (b) Spots
of the same brightness relative to the background are added, along with Poisson noise.
Because the noise is relatively lower as the brightness increases, now only the spots in the
brightest part of the image can be seen.

An instance in which we could increase background without adding to the absolute
brightness of the meaningful signal (and thereby make detection more di�cult) would be
if we were to open the pinhole of a confocal microscope very widely, and thereby detect
a large amount of out-of-focus light but very little extra in-focus light. By contrast,
increasing exposure times would lead to detecting more light from both background and
structures of interest, potentially aiding detection by causing the same relative increase
in brightness everywhere and improving image quality (at least providing the additional
exposure is not too detrimental to the sample).



156 CHAPTER 16. NOISE

(a) A noise-free signal (b) Photon noise (c) Read noise (d) Photon + Read
noise

Figure 16.10: An illustration of how photon noise di↵ers from read noise. When both are
added to a signal (here, a series of steps in which the value doubles at each higher step),
the relative importance of each depends upon the value of the signal. At low signal levels
this doubling is very di�cult to discern amidst either type of noise, and even more so
when both noise components are present.

to determine the number of any small structures in an image, for example, we
need to remember that the numbers we will be able to detect will be a↵ected by
the background nearby. Therefore results obtained from bright and dark regions
might not be directly comparable.

Simulating photon noise

You can add simulated Poisson noise to an im-
age using Process ! Noise ! RandomJ ! RandomJ

Poisson. The pixel values before adding the noise will
be treated as the true signal if you select Insertion:

modularity, in which case the choice of Mean setting does
not matter.

Practical 16.3
Open the images mystery noise 1.tif and mystery noise 2.tif. Both are
noisy, but in one the noise follows a Gaussian distribution (like read noise)
and in the other it follows a Poisson distribution (like photon noise). Which is
which? Solution

16.4 Combining noise sources

Combining our noise sources then, we can imagine an actual pixel value as being
the sum of three values: the true rate of photon emission, the photon noise
component, and the read noise component4. The first of these is what we want,
while the latter two are random numbers that may be positive or negative.

4For a fuller picture, gain and o↵set also need to be taken into consideration, see Chapter 17.
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This is illustrated in Figure 16.10 using a simple 1D signal consisting of a
series of steps. Random values are added to this to simulate photon and read
noise. Whenever the signal is very low (indicating few photons), the variability in
the photon noise is very low (but high relative to the signal! (b)). This variability
increases when the signal increases. However, in the read noise case (c), the
variability is similar everywhere. When both noise types are combined in (d), the
read noise dominates completely when there are few photons, but has very little
impact whenever the signal increases. Photon noise has already made detecting
relative di↵erences in brightness di�cult when there are few photons; with read
noise, it can become hopeless.

Therefore overcoming read noise is critical for low-light imaging, and the
choice of detector is extremely important (see Chapter 17.3). But, where possible,
detecting more photons is an extremely good thing anyway, since it helps to
overcome both types of noise.

Other noise sources
Photon and read noise are the main sources of noise that need to be considered
when designing and carrying out an experiment. One other source often
mentioned in the literature is dark noise, which arises when a wayward electron
causes the detector to register a photon even when there was not actually one
there. In very low-light images, this lead to spurious bright pixels. However,
dark noise is less likely to cause problems if many true photons are detected,
and many detectors reduce its occurrence by cooling the sensor.

If the equipment is functioning properly, other noise sources could probably not
be distinguished from these three. Nevertheless, brave souls who wish to know
more may find a concise, highly informative, list of more than 40 sources of
imprecision in The 39 steps: a cautionary tale of quantitative 3-D fluorescence
microscopy by James Pawley:

http://www.zoology.wisc.edu/faculty/Paw/pdfs/The_39_Steps_corrected.pdf

Question 16.4

Suppose you have an image that does not contain much light,
but has some isolated bright pixels. Which ImageJ command
could you use to remove them? And is it safe to assume they
are due to dark noise or something similar, or might the pixels
correspond to actual bright structures?

Solution
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(a) 1 image (b) 10 images (c) 100 images (d) 1000 images

Figure 16.11: The e↵ect of adding (or averaging) multiple noisy images, each independent
with a similar SNR.

(a) 50⇥ 50 pixels (b) 250⇥ 250 pixels (c) 500⇥ 500 pixels

Figure 16.12: Harry Nyquist (1889-1975) and Claude Shannon (1916-2001), sampled
using di↵erent pixel sizes. Their work is used when determining the pixel sizes needed to
maximize the available information when acquiring images, which depends upon the size
of the PSF.

16.5 Finding photons

There are various places from which the extra photons required to overcome noise
might come. One is to simply acquire images more slowly, spending more time
detecting light. If this is too harsh on the sample, it may be possible to record
multiple images quickly. If there is little movement between exposures, these
images could be added or averaged to get a similar e↵ect (Figure 16.11). An
alternative would be to increase the pixel size, so that each pixel incorporates
photons from larger regions – although clearly this comes at a cost in spatial
information (see Section 17.3.3).

Nyquist sampling
Small pixels are needed to see detail, but also reduce the number of photons
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per pixel and thereby increase noise. However, Chapter 15 has already argued
that ultimately it is not pixel size, but rather the PSF that limits spatial
resolution – which suggests that there is a minimum pixel size below which
nothing is gained, and the only result is that more noise is added.

This size can be determined based upon knowledge of the PSF and the Nyquist-
Shannon sampling theorem (Figure 16.12). Images acquired with this pixel size
are said to be Nyquist sampled. The easiest way to determine the corresponding
pixel size for a given experiment is to use the online calculator provided by
Scientific Volume Imaging at http://www.svi.nl/NyquistCalculator. You
may need larger pixels to reduce noise or see a wider field of view, but you do
not get anything extra by using smaller pixels.
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Solutions

Question 16.1

• We detect 10 photons, read noise std. dev. 1 photon: SNR = 10

• We detect 100 photons, read noise std. dev. 10 photons: SNR = 10

• We detect 1000 photons, read noise std. dev. 10 photons: SNR = 100 The
noise causes us a similar degree of uncertainty in the first two cases. In the
third case, the noise is likely to be less problematic: higher SNRs are good.

Practical 16.1 The standard deviation of the result should be close top
9 + 16 = 5

Question 16.2 When operating on the noise images with standard deviations
of 5, the (approximate) standard deviations you should get are:

1.
p
50 = 7.1 – add the variances, then take the square root

2.
p
50 = 7.1 – same as addition; switching the sign (positive or negative) of

a Gaussian noise image with zero mean just gives another Gaussian noise
image with zero mean

3.
p
50 = 7.1 – the order of subtraction doesn’t matter

4.
p
50/2 = 3.5 – same as addition, but divide the result by 2

5. 10 – equivalent to multiplying the image by 2, so multiply the standard
deviation by 2

Practical 16.2 After applying the filter once, the standard deviation should
be around 10. Using a 3⇥ 3 mean filter, the noise standard deviation should be
reduced to around 1/3 of its original value.

You can break down the problem this way:

• Let the original noise standard deviation be �, the variance is �2

• The filter first replaces each pixel with the sum of 9 independent values.
The variance becomes 9�2, the standard deviation

p
9�2 = 3�

• The filter divides the result by 9 to give means. This also divides the
standard deviation by 9, giving 3�/9 = �/3
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However, when I apply the filter a second time, the standard deviation is 7. It
has decreased by much less, despite using the same filter. This is because after
the first filtering, the noise is no longer independent at each pixel.

Question 16.3 The probability of detecting 5 photons is approximately 0.0031.

e

�1

5!
=

1

120e
= 0.0031 (16.5)

Although this is a very low probability, images contain so many pixels that
one should expect to see such noisy values often. For example, in a rather dark
and dull 512⇥ 512 pixel image in which the average photon emission rate is 1, we
would expect 800 pixels to have a value of 5 – and two pixels even to have a value
of 8. The presence of isolated bright or dark pixels therefore usually tells us very
little indeed, and it is only by processing the image more carefully and looking
at surrounding values that we can (sometimes) discount the possibility these are
simply the result of noise.

Practical 16.3 The noise in mystery noise 1.tif is Gaussian, it is Poisson
in mystery noise 2.tif. Since there are reasonably flat regions within the cell
and background, I would test this by drawing a ROI within each and measuring
the standard deviations. Where these are similar, the noise is Gaussian; if there
is a big di↵erence, the noise is likely to be Poisson.

If no flat regions were available, I would try applying a gradient filter with
the coe�cients -1 1 0, and inspecting the results. Alternatively, I might try
plotting a fluorescence profile or subtracting a very slightly smoothed version of
each image.

Question 16.4 A median filter is a popular choice for removing isolated bright
pixels, although I sometimes prefer Process ! Noise ! Remove Outliers...

because this only puts the median-filtered output in the image if the original value
was really extreme (according to some user-defined threshold). This then preserves
the independence of the noise at all other pixels – so it still behaves reliably and
predictably like Poisson + Gaussian noise. We can reduce the remaining noise
with a Gaussian filter if necessary.

Assuming that the size of a pixel is smaller than the PSF (which is usually the
case in microscopy), it is a good idea to remove these outliers. They cannot be
real structures, because any real structure would have to extend over a region at
least as large as the PSF. However if the pixel size is very large, then we may not
be able to rule out that the ‘outliers’ are caused by some real, bright structures.





17

Microscopes & detectors

Chapter outline

• The choice of microscope influences the blur, noise & temporal
resolution of images

• An ideal detector would have a high Quantum E�ciency & low
read noise

17.1 Introduction

Successfully analyzing an image requires that it actually contains the necessary
information in the first place. There are various practical issues related to the
biology (e.g. not interfering too much with processes, such as by inadvertently
killing things) and data handling (bit-depths, file formats, anything else in Part I).
However, assuming that these are in order, there are three other main factors to
consider connected to the image contents:

1. Spatial information, dependent on the size and shape of the PSF,

2. Noise, dependent on the number of photons detected,

3. Temporal resolution, dependent on the speed at which the microscope can
record images.

No one type of microscope is currently able to optimize all of these simultaneously,
and so decisions and compromises need to be made. Temporal resolution and
noise have an obvious relationship, in that a high temporal resolution means that
less time is spent detecting photons in the image, leading to more photon noise.
However, improving spatial information is also often related to one or both of the
other two factors.

This chapter gives a very brief overview of the main features of several
fluorescence microscopes from the point of view of how they balance the tradeo↵s
mentioned. Be aware that it does not do justice to all the complexities, variations
and features of the microscopes it describes! But it is included nonetheless in case
it might be useful to anyone as a starting point.

163
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(a) Widefield (b) LSCM (c) SDCM (d) 2-Photon (e) TIRF

Figure 17.1: Schematic diagrams to show the di↵erences in excitation patterns. Here, an
inverted microscope is assumed (the cell is resting on a coverslip, and illuminated from
below). During the recording of a pixel, light can potentially be detected if it arises from
any part of the green-illuminated region, although in the laser scanning and spinning disk
confocal cases the pinhole will only permit a fraction of this light to pass through. Note
that, for the 2-photon microscope, the excitation is confined to only the small, central
region, while the red light above and below is not capable of exciting the fluorophores
that have been used.

17.2 Types of microscope

17.2.1 Widefield

So far, our schematic diagrams (e.g. Figure 14.1) and PSF discussion (Chapter 15)
have concentrated on widefield microscopes. In widefield microscopy, the entire
sample is bathed in light, so that many fluorophores throughout the sample can be
excited and emit photons simultaneously. All of the light that enters the objective
may then be detected and contribute to any image being recorded. Because
photons are potentially emitted from everywhere in the sample, there will be a
lot of blur present for a thick specimen (for a thin specimen there is not much
light from out-of-focus planes because the planes simply do not contain anything
that can fluoresce). What we get in any single recorded image is e↵ectively the
sum of the light from the in-focus plane, and every other out-of-focus plane.
Viewed in terms of PSFs, we capture part of the hourglass shape produced by
every light-emitting point depending upon how in-focus it is in every image
(Figure 15.4).

This is bad news for spatial information and also for detecting small
structures in thick samples, as the out-of-focus light is essentially background
(see Figure 16.9a). On the other hand, widefield images tend to include a lot of
photons, which overcomes read noise, even when they are recorded fast.

17.2.2 Laser scanning confocal

Optical sectioning is the ability to detect photons only from the plane of focus,
rejecting those from elsewhere. This is necessary to look into thick samples without
getting lost in the haze of other planes. Laser Scanning Confocal Microscopy
(LSCM) achieves this by only concentrating on detecting light for one pixel at any
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time, and using a pinhole to try to only allow light from a corresponding point in
the sample to be detected.

Because at most only one pixel is being recorded at any given moment, it
does not make sense to illuminate the entire sample at once, which could do
unnecessary damage. Rather, a laser illuminates only a small volume. If this
would be made small enough, then a pinhole would not actually be needed because
we would know that all emitted light must be coming from the illuminated spot;
however, the illumination itself is like an hour-glass PSF in the specimen and
so the pinhole is necessary to make sure only the light from the central part is
detected. This then causes the final PSF, as it appears in the image, to take on
more of a rugby-ball (or American football) appearance.

The end result is an image that has relatively little out-of-focus light. This
causes a significant improvement in what can be seen along the z-dimension,
although the xy resolution is not very di↵erent to the widefield case. Also,
because single pixels are recorded separately, the image can (potentially) be more
or less any size and shape – rather than limited by the pixel count on a camera
(see Section 17.3.2).

However, these advantages comes with a major drawback. Images usually
contain thousands to millions of pixels, and so only a tiny fraction of the time
required to record an image is spent detecting photons for any one pixel in a
LSCM image – unlike in the widefield case, where photons can be detected for
all pixels over the entire image acquisition time. This can cause LSCM image
acquisition to be comparatively slow, noisy (in terms of few detected photons) or
both. Spatial information is therefore gained at a cost in noise and/or temporal
resolution.

Question 17.1
Why is it often recommended that the pinhole in LSCM be set to have the
same size as one Airy disk? And why is it sometimes better not to strictly
follow this recommendation? Solution

17.2.3 Spinning disk confocal

So a widefield system records all pixels at once without blocking the light from
reaching the detector anywhere, whereas a LSCM can block out-of-focus light by
only recording a single pixel at a time. Both options sound extreme: could there
not be a compromise?

Spinning disk confocal microscopy (SDCM) implements one such compromise
by using a large number of pinholes punched into a disk, so that the fluorophores
can be excited and light detected for many di↵erent non-adjacent pixels
simultaneously. By not trying to record adjacent pixels at the same time, pinholes
can be used to block most of the out-of-focus light for each pixel, since this
originates close to the region of interest for that pixel (i.e. the PSF becomes very
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dim at locations far away from its centre) – but su�ciently-spaced pixels can still
be recorded simultaneously with little influence on one another.

In practice, spinning disk confocal microscopy images are likely to be less
sharp than laser scanning confocal images because some light does scatter through
other pinholes. Also, the pinhole sizes cannot be adjusted to fine-tune the balance
between noise and optical sectioning. However, the optical sectioning o↵ered by
SDCM is at least a considerable improvement over the widefield case, and an
acceptable SNR can be achieved with much faster frame-rates using SDCM as
opposed to LSCM.

17.2.4 Multiphoton microscopy

As previously mentioned, if the size of excitation volume could be reduced enough,
then we would know where the photons originated even without a pinhole being
required – but normally focused excitation is still subject to PSF-related issues, so
that fluorophores throughout a whole hourglass-shaped volume can end up being
excited. The main idea of multiphoton microscopy is that fluorophore excitation
requires the simultaneous absorption of multiple photons, rather than only a single
photon. The excitation light has a longer wavelength than would otherwise be
required to cause molecular excitation with a single photon, but the energies of
the multiple photons combine to cause the excitation.

The benefit of this is that the multiphoton excitation only occurs at the focal
region of the excitation – elsewhere within the ‘specimen PSF’ the light intensities
are insu�cient to produce the ‘multiphoton e↵ect’ and raise the fluorophores into
an excited state. This means that the region of the specimen emitting photons
at any one time is much smaller than when using single photon excitation (as
in LSCM), and also less damage is being caused to the sample. Furthermore,
multiphoton microscopy is able to penetrate deeper into a specimen – up to several
hundred µm.

17.2.5 Total Internal Reflection Fluorescence

As previously mentioned, widefield images of very thin specimens do not su↵er
much from out-of-focus blur because light is not emitted from many other planes.
Total Internal Reflection Fluorescence (TIRF) microscopy makes use of this by
stimulating fluorescence only in a very thin section of the sample close to the
objective. Very briefly, TIRF microscopy involves using an illumination angled
so that the change in refractive index encountered by the light as it approaches
the specimen causes a further change in angle su�cient to prevent the light from
directly entering the specimen (i.e. it is ‘totally internally reflected’). Nevertheless,
fluorophores can still be excited by an evanescent wave that is produced when
this occurs. This wave decays exponentially, so that only fluorophores right at
the surface are excited – meaning fluorophores deeper within the specimen do not
interfere with the recording.



17.3. PHOTON DETECTORS 167

Figure 17.2: Diagram showing the detection of a photon by a PMT. Each photon can
be ‘multiplied’ to produce many electrons by accelerating the first produced electron
towards a dynode, and repeating the process for all electrons produced along a succession
of dynodes. The charge of the electrons reaching the end of the process can then be
quantified, and ought to be proportional to the number of photons that arrived at the
PMT.

Importantly, because the subsequent recording is essentially similar to that
used when recording widefield images, photons are detected at all pixels in parallel
and fast recording-rates are possible. Therefore if it is only necessary to see to a
depth of about 100 nm, TIRF microscopy may be a good choice.

17.3 Photon detectors

Certain detectors are associated with certain types of microscopy, and di↵er
according to the level and type of noise you can expect. Understanding the basic
principles greatly helps when choosing sensible values for parameters such as gain,
pixel size and binning during acquisition to optimize the useful information in the
image. The following is an introduction to three common detectors.

17.3.1 PMTs: one pixel at a time

If you only need to record one pixel at a time, a photomultiplier tube (PMT) might
be what you need. The basic principle is this: a photon strikes a photocathode,
hopefully producing an electron. When this occurs, the electron is accelerated
towards a dynode, and any produced electrons accelerated towards further dynodes.
By adjusting the ‘gain’, the acceleration of the electrons towards successive dynodes
can be varied; higher accelerations mean there is an increased likelihood that
the collision of the electrons with the dynode will produce a higher number of
electrons moving into the next stage. The charge of the electrons is then quantified
at the end (Figure 17.2), but because the (possibly very small) number of original
detected photons have now been amplified to a (possibly much) larger number
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electrons by the successive collisions with dynodes, the e↵ect of read noise is
usually minor for a PMT.

More problematically, PMTs generally su↵er from the problem of having
low quantum e�ciencies (QEs). The QE is a measure of the proportion of
photons striking the detector which then produce electrons, and typical values for
a conventional PMT may be only 10–15%: the majority of the photons reaching
the PMT are simply wasted. Thus photon noise can be a major issue, especially
if there is a low amount of light available to detect in the first place.

Converting electrons to pixels
It is important to note that the final pixel values are not equal to numbers of
detected photons – nor even numbers of counted electrons. They are rather
proportional, often with an o↵set added. It is essential to estimate this o↵set
(perhaps from a background region or an image acquired without using any
excitation light) and subtract it if comparing pixel values in di↵erent images,
as well as to use identical acquisition settings.

17.3.2 CCDs: fast imaging when there are a lot of photons

A Charged Coupled Device (CCD) is a detector with a region devoted to sensing
photons, and which is subdivided into di↵erent ‘physical pixels’ that correspond
to pixels in the final image. Thus the image size cannot be changed arbitrarily,
but it is possible to record photons for many pixels in parallel.

When a photon strikes a pixel in the sensing part of the CCD, this often
releases an electron – the QE is typically high (perhaps 90%). After a certain
exposure time, di↵erent ‘electron clouds’ have then formed at each physical pixel
on the sensor, each of which has a charge related to the number of colliding
photons. This charge is then measured by passing the electrons through a charge
amplifier, and the results used to assign an intensity value to the pixel in the final
image (Figure 17.3).

The electron clouds for each pixel might be larger than in the PMT case,
both because of the higher QE and because more time can be spent detecting
photons (since this is carried out for all pixels simultaneously). However, the
step of amplifying the numbers of electrons safely above the read noise before
quantification is missing. Consequently, read noise is potentially more problematic,
and in some cases can even dominate the result.

17.3.3 Pixel binning

One way to address the issue of CCD read noise is to use pixel binning. In this
case, the electrons from 4 (i.e. 2⇥ 2) pixels of the CCD are added together before
being quantified: the electron clouds are approximately 4 times bigger relative
to the read noise (Figure 17.4), and readout can be faster because fewer electron
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(a) Photon detection

(b) Frame transfer (c) Quantification

Figure 17.3: An illustration of the basic operation of a CCD camera (using frame transfer).
First, photons strike a sense register, which is divided into pixels. This causes small
clouds of electrons to be released and gather behind the pixels (a). These are then rapidly
shifted downwards into another register of the same size, thereby freeing the sense register
to continue detecting photons (b). The electron clouds are then shifted downwards again,
one row at a time, with each row finally being shifted sequentially through a charge
amplifier (c). This quantifies the charge of the electron clouds, from which pixel values
for the final image are determined.
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(a) CCD (no binning) (b) CCD (2⇥ 2 binning) (c) EMCCD

Figure 17.4: A simplified diagram comparing a conventional CCD (with and without
binning) and an EMCCD. While each has the same physical number of pixels, when
binning is used electrons from several pixels are combined before readout – thereby making
the ‘logical’ pixels in the final image bigger. For the EMCCD, the electrons are shifted
through a ‘gain register’ prior to quantification. See Figure 17.3 for additional labels; the
sense register has been omitted for simplicity.

(a) No binning (b) 2⇥ 2 binning (c) 4⇥ 4 binning (d) 8⇥ 8 binning

Figure 17.5: Illustration of the e↵ect of binning applied to an image su↵ering from photon
and read noise. As the bin size increases, the photons from neighbouring pixels are
combined into a single (larger) pixel before the read noise is added. As a consequence, the
image becomes brighter relative to the read noise – but at a cost of spatial information.

clouds need to be quantified. The obvious disadvantage of this is that one cannot
then put the electrons from the 4 pixels ‘back where they belong’. As a result,
the binned measurement is simply treated as a single (bigger) pixel. The recorded
image contains 25% of the pixels in the unbinned image, while still covering the
same field of view, so spatial information is lost. Larger bins may also be used,
with a correspondingly more dramatic impact upon image size (Figure 17.5).

17.3.4 EMCCDs: fast imaging with low light levels

And so you might wonder whether it is possible to increase the electron clouds
(like with the PMT) with an CCD, and so get its advantages without the major
inconvenience of read noise. Electron Multiplying CCDs (EMCCDs) achieve this
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to some extent. Here, the electrons are first passed through an additional ‘gain
register’ before quantification. At every stage of this gain register, each electron
has a small probability – perhaps only 1% – of being amplified (through ‘impact
ionisation’) and giving rise to two electrons entering the next stage. Despite the
small probability, by incorporating > 500 such stages, the size of the electron
cloud arising from even a single photon may be amplified safely above the read
noise.

However, the randomness of the amplification process itself introduces a new
source of uncertainty, so that the final outcome can be thought of as having the
same precision as if perhaps only around half as many photons were detected
(see Section 16.3 for the relationship between noise and the number of photons).
Therefore read noise is e↵ectively overcome at the cost of more photon noise.

Question 17.2
From a practical point of view, an EMCCD is rather like having a CCD with
no read noise, but with half the QE. Under what circumstances (i.e. high or
low numbers of photons) is an EMCCD preferable to a CCD? Solution

Question 17.3
Based upon the above descriptions, which detectors seem most appropriate
(generally!) for (a) widefield microscopy, (b) SDCM and (c) LSCM? Solution

Question 17.4
Section 17.3.3 described how CCDs can use 2 ⇥ 2 binning to combine the
electrons corresponding to multiple pixels together into a single pixel, which is
then ‘less noisy’. A similar e↵ect can be achieved by just acquiring an image
without binning and applying a 2⇥ 2 filter, in which all the coe�cients have
values of one. Both techniques result in images that have roughly four times as
many photons contributing to each pixel, and thus a better SNR.

Think of one major advantage and one disadvantage of using filtering after
acquisition, rather than binning during acquisition. Solution
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Solutions

Question 17.1 As described in Chapter 15, the vast majority (approximately
80%) of the light from the in-focus plane falls within the Airy disk (see Figure 15.6c).
Using a pinhole smaller than this can result in so little light being detected that
the image becomes too noisy to be useful. On the other hand, increasing the size
of the pinhole will result in some more of the remaining 20% located in the outer
rings of the Airy pattern, but most extra photons will come from out-of-focus
planes. This causes a reduction in the e↵ectiveness of the optical sectioning.
Therefore, a pinhole diameter of approximately 1 Airy disk provides a reasonable
balance between detecting most of the in-focus light and achieving good optical
sectioning.

Nevertheless, sometimes a reduction in optical sectioning is a worthwhile cost
– such as when photons are very scarce, and some extra background is tolerable.
Also, when recording a multichannel image then you may well have to set the
pinhole size according to the Airy disk for one channel. But because the size of
the disk depends upon the light wavelength (Equation 15.1), the pinhole diameter
will di↵er in terms of Airy disk sizes for other channels.

Question 17.2 The gain register of EMCCDs o↵ers benefits primarily when
few photons are available (i.e. when read-noise is the main problem, such as in
SDCM). CCDs are preferable when many photons are available (e.g. in widefield).

If you are skeptical about this, consider an image in which your read noise
standard deviation is 10 electrons and you detect on average 9 electrons (originally
photons). The photon noise then has a standard deviation of 3. The read noise is
much larger and will completely dominate the image: nothing interesting will be
visible. It is then worth the cost of even more photon noise to be able to eliminate
the read noise. The final image will still look pretty bad, but at least interpreting
it is not hopeless.

But suppose you happen to have 90000 detected photons instead, in which
case the standard deviation of the photon noise is now 300. The read noise
of 10 is comparatively insignificant, and there is nothing to gain from electron
multiplication and making the photon noise situation worse.

Question 17.3 The following are reasonable rules of thumb:

• Widefield microscopy: A CCD is suitable because of its ability to record
many pixels simultaneously. The large number of photons normally detected
means that read noise is not usually a big issue, and an EMCCD can make
the problem of noise worse instead of better.

• Spinning Disk Confocal Microscopy: A CCD may be used, but an EMCCD
is often preferable. This is because SDCM usually gives lower photon counts
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(certainly lower than in a comparable widefield image), which can mean
that read noise would dominate the result unless the photons are somehow
amplified.

• Laser Scanning Confocal Microscopy: PMTs are suitable, since the image is
built up one pixel at a time.

Question 17.4 A 2⇥ 2 binned image contains 1/4 the number of pixels of the
original image. This represents a considerable loss of spatial information, and you
would get a di↵erent result if you were to start binning at the first or second row
or column, since di↵erent pixels would be combined in each case. On the other
hand, filtering has the advantage of giving you an image that is exactly the same
size as the original. This is like getting all four possible binned images for the
price of one (i.e. all four di↵erent ways to split the image into 2⇥ 2 pixel blocks,
instead of just one way), so less spatial information is lost. With filtering you also
have much more flexibility: you might choose a 3⇥ 3 filter instead, or a Gaussian
filter, or a range of di↵erent filtering options to see which is best. With binning,
you need to choose one option during acquisition and stick with it.

However, if read noise is a major problem then filtering might not be such a
good choice. This is because read noise is added to every acquired pixel once, and
it does not matter if you have a few photons or many – its standard deviation
remains the same. Therefore, if the electrons from four pixels are combined by
binning during acquisition, then only one ‘unit’ of read noise appears in the image
corresponding to those pixels. But an unbinned image would have read noise
added four times, and even after 2⇥ 2 filtering this is still more read noise than in
a comparable binned image. Sometimes this extra noise is too high a cost for the
flexibility of filtering, and binning is better. (In this regard, remember that read
noise is typically worse for CCD cameras, but not such a problem for EMCCDs
or PMTs.)
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Simulating image formation

18.1 Introduction

The Di↵erence of Gaussians macro developed in Chapter 13 was useful, but
quite simple. This chapter contains an extended practical, the goal of which is
to develop a somewhat more sophisticated macro that takes an ‘ideal’ image,
and then simulates how it would look after being recorded by a fluorescence
microscope. It can be used not only to get a better understanding of the image
formation process, but also to generate test data for analysis algorithms. By
creating simulations with di↵erent settings, we can investigate how our results
might be a↵ected by changes in image acquisition and quality.

18.1.1 Image formation summary

The following is a summary of the aspects of image formation discussed so far:

• Images are composed of pixels, each of which has a single numeric value
(not a colour!).

• The value of a pixel in fluorescence microscopy relates to a number of
detected photons – or, more technically, the charge of the electrons produced
by the photons striking a detector.

• Images can have many dimensions. The number of dimensions is essentially
the number of things you need to know to identify each pixel (e.g. time
point, channel number, x coordinate, y coordinate, z slice).

• The two main factors that limit image quality are blur and noise. Both are
inevitable, and neither can be completely overcome.

• Blur is characterized by the point spread function (PSF) of the microscope,
which is the 3D volume that would be the result of imaging a single light-
emitting point. It acts as a convolution.

• In the focal plane, the image of a point is an Airy pattern. Most of the light
is contained within a central region, the Airy disk.

175
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• The spatial resolution is a measure of the separation that must exist between
structures before they can adequately be distinguished as separate, and
relates to the size of the PSF (or Airy disk in 2D).

• The two main types of noise are photon noise and read noise. The former is
caused by the randomness of photon emission, while the latter arises from
imprecisions in quantifying numbers of detected photons.

• Detecting more photons helps to overcome the problems caused by both
types of noise.

• Di↵erent types of microscope have di↵erent advantages and costs in terms
of spatial information, temporal resolution and noise.

• PMTs are used to detect photons for single pixels, while CCDs and EMCCDs
are used to detect photons for many pixels in parallel.

The macro in this chapter will work for 2D images, and simulate the three
main components:

1. the blur of the PSF

2. the inclusion of photon noise

3. the addition of read noise

Furthermore, the macro will ultimately be written in such a way that allows us
to investigate the e↵ects of changing some additional parameters:

• the size of the PSF (related to the objective lens NA and microscope type)

• the amount of fluorescence being emitted from the brightest region

• the amount of background (from stray light and other sources)

• the exposure time (and therefore number of detected photons)

• the detector’s o↵set

• the detector’s gain

• the detector’s read noise

• camera binning

• bit-depth
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18.2 Recording the main steps

It does not really matter which image you use for this, but I recommend a single-
channel 2D image that starts out without any obvious noise (e.g. a single channel
from HeLa Cells). After starting the macro recorder, completing the following
steps will create the main structure for the macro:

• Ensure the starting image is 32-bit.

• Run Gaussian Blur... using a sigma value of 2 to simulate the convolution
with the PSF.

• Here, we will assume that there are some background photons from other
sources, but around the same number at every pixel in the image. So we
can simply add a constant to this image using Add.... The value should be
small, perhaps 10.

• The image now contains the ‘average rates of photon emission’ that we would
normally like to have for one particular exposure time (i.e. it is noise-free).
If we change the exposure time, we should change the pixel values similarly
so that the rates remain the same. Because adjusting the exposure works
like a simple multiplication, we can use the Multiply... command. Set it
to a ‘default’ value of 1 for now.

• To convert the photon emission rates into actual photon counts that we
could potentially detect, we need to simulate photon noise by replacing each
pixel by a random value from a Poisson distribution that that has the same
� as the rate itself. Apply this using RandomJ Poisson, making sure to
set the Insertion: value to Modulatory. The Mean value will be ignored,
so its setting does not matter. Notice that all the pixels should now have
integer values: you cannot detect parts of photons.

• The detector gain scales up the number of electrons produced by detected
photons. Make room for it by including another multiplication, although
for now set the value to 1 (i.e. no extra gain).

• Simulate the detector o↵set by adding another constant, e.g. 100.

• Add read noise with Process ! Noise ! Add Specified Noise...,
setting the standard deviation to 5.

• Clip any negative values, by running Min... and setting the value to 0.

• Clip any positive values that exceed the bit-depth, by running Max.... To
assume an a 8-bit image, set the value to 255.
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Now is a good time to clean up the code by removing any unnecessary lines,
adding suitable comments, and bringing any interesting variables up to the top of
the macro so that they can be easily modified later (as in Section 13.2). The end
result should look something like this:

// Variables to change

psfSigma = 2;

backgroundPhotons = 10;

exposureTime = 1;

readStdDev = 5;

detectorGain = 1;

detectorOffset = 100;

maxVal = 255;

// Ensure image is 32-bit

run("32-bit");

// Simulate PSF blurring

run("Gaussian Blur...", "sigma="+psfSigma);

// Add background photons

run("Add...", "value="+backgroundPhotons);

// Multiply by the exposure time

run("Multiply...", "value="+exposureTime);

// Simulate photon noise

run("RandomJ Poisson", "mean=1.0 insertion=modulatory");

// Simulate the detector gain

run("Multiply...", "value="+detectorGain);

// Simulate the detector offset

run("Add...", "value="+detectorOffset);

// Simulate read noise

run("Add Specified Noise...", "standard="+readStdDev);

// Clip any negative values

run("Min...", "value=0");

// Clip the maximum values based on the bit-depth

run("Max...", "value="+maxVal);
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You would have a perfectly respectable macro if you stopped now, but the
following section contains some ways in which it may be improved.

18.3 Making improvements

Normalizing the image

The results you get from running the above macro will change depending upon
the original range of the image that you use: that is, an image that starts o↵ with
high-valued pixels will end up having much less noise. To compensate for this
somewhat, we can first normalize the image so that all pixels fall into the range
0–1. To do this, we need to determine the current range of pixel values, which
can be found out using the macro function:

getStatistics(area, mean, min, max);

After running this, four variables are created giving the mean, minimum and
maximum pixel values in the image, along with the total image area. Normalization
is now possible using Subtract and Divide commands, and adjusting their values.
In the end this gives us

getStatistics(area, mean, min, max);

run("Subtract...", "value="+min);

divisor = max - min;

run("Divide...", "value="+divisor);

Varying the fluorescence emission rate

The new problem we will have after normalization is that there will be a maximum
photon emission rate of 1 in the brightest part of the image, which will give us
a image dominated completely by noise. We can change this by multiplying the
pixels again, and so define what we want the emission rate to be in the brightest
part of the image. I suggest creating a variable for this, and setting its value to
10. Then add the following line immediately after normalization:

run("Multiply...", "value="+maxPhotonEmission);

Modifying this value allows you to change between looking at samples that are
fluorescing more or less brightly. For a less bright sample, you will most likely need
to increase the exposure time to get a similar amount of signal – but beware that
increasing the exposure time also involves collecting more unhelpful background
photons, so is not quite so good as having a sample where the important parts
are intrinsically brighter.

Simulating binning

The main idea of binning is that the electrons from multiple pixels are added
together prior to readout, so that the number of electrons being quantified is
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bigger relative to the read noise. For 2 ⇥ 2 binning this involves splitting the
image into distinct 2⇥ 2 pixel blocks, and creating another image in which the
value of each pixel is the sum of the values within the corresponding block.

This could be done using the Image ! Transform ! Bin command, with
shrink factors of 2 and the Sum bin method. The macro recorder can again be
used to get the main code that is needed. After some modification, this becomes

if (doBinning) {

run("Bin...", "x=2 y=2 bin=Sum");

}

By enclosing the line within a code block (limit by the curly brackets) and beginning
the block with if (doBinning), it is easy to control whether binning is applied
or not. You simply add an extra variable to your list at the start of the macro

doBinning = true;

to turn binning on, or

doBinning = false;

to turn it o↵. These lines performing the binning should be inserted before the
addition of read noise.

Varying bit-depths

Varying the simulated bit-depths by changing the maximum value allowed in the
image takes a little work: you need to know that the maximum value in an 8-bit
image is 255, while for a 12-bit image it is 4095 and so on. It is more intuitive to
just change the image bit-depth and have the macro do the calculation for you.
To do this, you can replace the maxVal = 255; variable at the start of the macro
with nBits = 8; and then update the later clipping code to become

maxVal = pow(2, nBits) - 1;

run("Max...", "value="+maxVal);

Here, pow(2, nBits) is a function that gives you the value of 2nBits. Now it is
easier to explore the di↵erence between 8-bit, 12-bit and 14-bit images (which are
the main bit-depths normally associated with microscope detectors, even if the
resulting image is stored as 16-bit).

Rounding to integer values

The macro has already clipped the image to a specified bit-depth, but it still
contains 32-bit data and so potentially has non-integer values that could not
be stored in the 8 or 16-bit images a microscope typically provides as output.
Therefore it remains to round the values to the nearest integer.

There are a few ways to do this: we can convert the image using Image !
Type ! commands, though then we need to be careful about whether there
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will be any scaling applied. However, we can avoid thinking about this if we just
apply the rounding ourselves. To do it we need to visit each pixel, extract its
value, round the value to the nearest whole number, and put it back in the image.
This requires using loops. The code, which should be added at the end of the
macro, looks like this:

// Get the image dimensions

width = getWidth();

height = getHeight();

// Loop through all the rows of pixels

for (y = 0; y < height; y++) {

// Loop through all the columns of pixels

for (x = 0; x < width; x++) {

// Extract the pixel value at coordinate (x, y)

value = getPixel(x, y);

// Round the pixel value to the nearest integer

value = round(value);

// Replace the pixel value in the image

setPixel(x, y, value);

}

}

This creates two variables, x and y, which are used to store the horizontal and
vertical coordinates of a pixel. Each starts o↵ set to 0 (so we begin with the pixel
at 0,0, i.e. in the top left of the image). The code in the middle is run to set the
first pixel value, then the variable x is incremented to become 1 (because x++

means ‘add 1 to x’). This process is repeated so long as x is less than the image
width, x < width. When x then equals the width, it means that all pixel values
on the first row of the image have been rounded. Then y is incremented and x is
reset to zero, before the process repeats and the next row is rounded as well. This
continues until y is equal to the image height – at which point the processing is
complete1.

18.3.1 Final code

The final code of my version of the macro is given below:

// Variables to change

psfSigma = 2;

backgroundPhotons = 10;

exposureTime = 10;

readStdDev = 5;

1If you are unfamiliar with programming, the syntax of loops may look quite strange. Reading
through some online tutorials for the ImageJ macro language or for-loops in Java should help
demystify what is happening here.
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detectorGain = 1;

detectorOffset = 100;

nBits = 8;

maxPhotonEmission = 10;

doBinning = false;

// Ensure image is 32-bit

run("32-bit");

// Normalize the image to the range 0-1

getStatistics(area, mean, min, max);

run("Subtract...", "value="+min);

divisor = max - min;

run("Divide...", "value="+divisor);

// Define the photon emission at the brightest point

run("Multiply...", "value="+maxPhotonEmission);

// Simulate PSF blurring

run("Gaussian Blur...", "sigma="+psfSigma);

// Add background photons

run("Add...", "value="+backgroundPhotons);

// Multiply by the exposure time

run("Multiply...", "value="+exposureTime);

// Simulate photon noise

run("RandomJ Poisson", "mean=1.0 insertion=modulatory");

// Simulate the detector gain

// (note this should really add Poisson noise too!)

run("Multiply...", "value="+detectorGain);

// Simulate binning (optional)

if (doBinning) {

run("Bin...", "x=2 y=2 bin=Sum");

}

// Simulate the detector offset

run("Add...", "value="+detectorOffset);

// Simulate read noise

run("Add Specified Noise...", "standard="+readStdDev);
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// Clip any negative values

run("Min...", "value=0");

// Clip the maximum values based on the bit-depth

maxVal = pow(2, nBits) - 1;

run("Max...", "value="+maxVal);

// Get the image dimensions

width = getWidth();

height = getHeight();

// Round the pixels to integer values

for (y = 0; y < height; y++) {

// Loop through all the columns of pixels

for (x = 0; x < width; x++) {

// Extract the pixel value at coordinate (x, y)

value = getPixel(x, y);

// Round the pixel value to the nearest integer

value = round(value);

// Replace the pixel value in the image

setPixel(x, y, value);

}

}

// Reset the display range (i.e. image contrast)

resetMinAndMax();

18.4 Limitations and uses

Of course, the above macro is based on some assumptions and simplifications.
For example, it treats gain as a simple multiplication of the photon counts – but
the gain amplification process also involves some randomness, which introduces
extra noise. Because this noise behaves statistically quite like photon noise, the
e↵ect can be thought of as decreasing the number of photons that were detected.
Also, we have treated the background as a constant that is the same everywhere
in an image. In practice, the background usually consists primarily of out-of-focus
light from other image planes, and so really should change in di↵erent parts of
the image, particularly in the widefield case.

Nevertheless, quite a lot of factors have been taken into consideration. By
exploring di↵erent combinations of settings, you can get a feeling for how they
a↵ect overall image quality. For example, you could try:
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• Increasing the background, while keeping the maximum photon emission
the same

• Removing the detector o↵set, or setting it to a negative value

• Comparing the e↵ects of binning for images with low and high photon counts

• Creating multiple images from the same source data, and then averaging
them together to see how the noise is changed

When planning to implement some analysis strategy – particularly if
fluorescence intensity measurements are being made – it may also be useful
to test its e↵ectiveness using this macro. To do so, you would need to somehow
create a ‘perfect’, noise and blur-free example image, either manually or by
deconvolving a suitably similar sample image. You can then apply your algorithm
to this perfect image to find out what it detects and what conclusions you could
draw. Then apply the exact same algorithm to a version of the image that has
passed through the simulator, and see how di↵erent your measurements and
conclusions would be. Ideally, the results should be the same in both cases. If
they are di↵erent, the comparison gives you some idea of how a↵ected by the
imaging process your measurements are, and therefore how reliably they relate to
the ‘real’ underlying sample.
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