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On Abbe's theory of image formation in the microscope-

H. KOHLER$
Universitat Stuttgart, D 7000 Stuttgart and Carl Zeiss, D 7082 Oberkochen

(Received 26 January 1981 ; revision received 23 April 1981)

Abstract . A historical survey is given of publications from 1873 to 1910
concerning Abbe's theory of image formation in the microscope . Furthermore,
the theory is presented in short by the algorithm of the complex Fourier
transform .

1 . Introduction
Abbe's 108 year old theory of image formation in the microscope undoubtedly

contains essential elements of modern `coherent optics' and holography . But anyone
interested in optics who wants to reconstruct the relationships will encounter
considerable difficulties, because so far a consistent representation of Abbe's theory
in the modern mathematical style does not exist . It must be reconstructed from
separate publications of the years 1873 to 1910 .

A detailed representation of the mathematical derivation of Abbe's theory will be
published in Zeiss Information [1] . This paper gives a historical survey of Abbe's
theory from a modern point of view, and deals with some mostly unknown facts .

2. History
Abbe's first publication of 1873 [2], which has become famous, is merely a verbal

treatment of the diffraction theory of microscopic imaging, the sine condition, the
laws of energy transport in the microscope (constancy of luminance), and the
principles of the desired correction of microscopic objectives, but without mathema-
tical derivations .

He states with regard to the diffraction theory of microscopic imaging: "The
limit of discrimination will never appreciably exceed a whole wavelength under
central illumination . . . and half a wavelength . . . under extreme oblique illumi-
nation ." This means

A= t/(n sin a) or A? t/(2n sin Q) .

He also describes in detail his experiments with respect to the resolution of periodic
structures . The most important results of these experiments are given in brief below .

I f due to diaphragms introduced in the back focal plane of a microscope objective
only one order of the diffraction spectrum of a periodic object is allowed to pass
through, no object structure can be recognized in the `secondary image', that is when
looking through the eyepiece . A faithfully represented structure of an object can only
be recognized when at least two adjacent orders of the diffraction spectrum are

t Excerpt from a lecture given at the Symposium of the International Commission for
Optics (I CO) and the Deutsche Gesellschaft fur angewandte Optik (DGaO) on 13 June, 1973
in Aalen, West Germany .

$ Present address : Prof. Dr Horst Kohler, Sauerbruchstrasse 6, D 7920 Heidenheim,
F.R. Germany .
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allowed to pass through. I f two non-adjacent orders of the diffraction spectrum pass
through, the structure of the image is not faithful to the object . The period length of
the image is, for example, twice that of the object .

In [2] Abbe announced that the mathematical derivation of these verbally
presented results would be published in Jenaische Zeitschsift fiir Naturwissenschaft,
but it never appeared . In 1874 Helmholtz [3] published an independent investigation
which proved the sine condition . He used a different scientific approach to treat the
influence of diffraction on microscopic imaging, and produced a mathematical
derivation. In a paper of 1880 [4] Abbe rejected unjustified criticism of his theory by
R . Altmann, and announced again the early publication of a mathematical proof of
his theory .

In 1882, in close co-operation with Abbe, Dippel [5] published in Handbuch der
allgemeinen Mikroskopie (handbook of general microscopy) a comprehensive account
of Abbe's theory, but still without mathematical derivations and not going
substantially beyond the contents of the original publication. This excellent
description was readily accepted and widely disseminated . It was included in this
form in almost all handbooks, and for a long time remained the most important
source of Abbe's theory. During Abbe's lifetime only the mathematical proof of the
sine condition was published, in an article in a handbook [6] by S . Czapski, then
Abbe's closest collaborator and later his successor .

Abbe died in 1905 without having published the mathematical proof of his
diffraction theory of image formation in the microscope . A first clue to the existence
of such a proof can be found in an article by Lummer, published in Muller-Pouillet's
handbook of physics in 1909 [7], 4 years after Abbe's death . In connection with the
elementary discussion of Abbe's theory, Lummer writes that he heard about the
mathematical derivation in 1888 from Abbe himself during a private lecture in Jena .
He also mentions that on account of its complexity it is not suitable for publication in
a handbook of this kind .

In 1910, with the permission of Mrs . Abbe, Lummer and Reiche presented
Abbe's theory in a consistent mathematical formulation [8] according to Abbe's
lecture scripts of the year 1888 . Our knowledge of the mathematical formulation of
Abbe's theory is exclusively based on this paper by Lummer and'Reiche . According
to this paper, Abbe correctly calculated the images of the following objects produced
by the microscope :

(a) an infinitely narrow slit in coherent and incoherent light ;
(b) two infinitely narrow slits at a finite distance in coherent light as a function of

the angle of incidence of the illumination ; and
(c) two infinitely narrow slits at a finite distance in incoherent light .
Abbe proved by these examples that in coherent light parallel to the axis the

double-slit structure is still recognizable if the slit width is A,> .1/n sin a, whereas in
incoherent light A> 2/2n sin a. The same resolution can be obtained with coherent
illumination when the angle of incidence of the illumination is such that the light
disturbance-[ in the two slits has a phase difference of an odd multiple of 2 .

Abbe also discussed coherently illuminated slits of finite width . He is the first to
use in optics the Fourier integral in the form presently known as the 'Fourier cosine
transform' (see the reproduction of the corresponding page from the book by

t'Light disturbance' is a scalar value of the electromagnetic field . It may be the complex
amplitude of one component of the electric or magnetic field vector .
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Figure 1 . Fourier integral as used by Abbe in his theory of the microscope (reproduced
from [8]) .

Lummer and Reiche [8] (figure 1)) . It can be assumed that Abbe himself used the
term Fourier integral in his own research work and in his lectures; it was not added
later in the adaptations by Lummer and Reiche . This is particularly suggested by a
hint Dippel gives in his handbook of general microscopy [5], where he says that an
exact representation of the theory of image formation in the microscope would
require the use of Fourier integrals, which in this context, however, would lead one
astray. The chapter on image formation in the microscope in Dippel's handbook was
prepared as early as 1882 in close co-operation with Abbe, that is 6 years before the
lecture in Jena when Lummer heard from Abbe about the theory of image formation
in the microscope . This little known fact proves that Abbe can be named with every
justification as the founder of Fourier optics and thus also a pioneer in holography .

According to Lummer and Reiche, Abbe used the Fourier cosine transform also
to prove that the sequence of integrations over object and aperture can be
interchanged when calculating microscopic images, which explains the experiments
described in [2] .

Abbe himself did not mathematically formulate this step . At the suggestion of
Lummer, Wolfke, one of Lummer's pupils, made the formulation in 1909 [9]t .

t He is the same Wolfke who in 1920 was the first to indicate in a theoretical paper [10] the
potentialities of holography to reveal molecular structures in crystalline lattices . According to
his ideas a `hologram' should be taken in X-ray light and reconstructed in visible light .
Although this was never realized, it demonstrates the close relationship between the theory of
image formation in the microscope and the principles of holography .
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Wolfke's derivation can be found in many handbooks of theoretical optics (see, for
example, [11, 12]) .

3 . Abbe's theory in terms of the algorithm of the complex Fourier
transform
Following the above historical survey, the propositions of Abbe's theory

included in the book by Lummer and Reiche are derived below using the calculus of
the complex Fourier transform . All calculations refer to the schematic microscope
beam path shown in figure 2 .

x

0

B(XY)

P

Object

Figure 2 . Light path for microscopic image formation in coherent light .

Let the object function B(X, Y) be a light disturbance function-- which results
when a transparent object, whose transmittance function A(X, Y) is different from
zero only within the limits X= +a and Y= ±b, is illuminated by coherent parallel
light which is in the general case incident at an angle with components a X and a y . Let
the local limitation of the transmittance function be formulated by the il-function$ .
The object function will thus have the form

B(X Y) rl 2a Y

	

X Y)exp[-ik(Xsinax +Ysina,,)],

	

(1)
2a'2b

	

'

with

2it
k=

	

(2)

t See footnote on page 1692 .
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The distribution function of the (complex) light amplitude in the back focal plane
(coordinates p, q) is the Fourier transform b(cox , (o y) of the object function B(X, Y)
with the Fourier frequencies co,, =21rR x and w y=27tR y (as usual, Rx and Ry are the
spatial frequencies) . This Fourier transform can be written in the form,

1
b(wx , wy) =27t f f '0 B(X, Y) exp [i(w xX+co y Y)] dxdy

=F{B(X, Y)} .

	

(3)

The Fourier frequencies in this are given as follows :

wx =27tRx= -
27t
-

p
;

= 27t
sin a .,,

	

(4 a)
A f1 A

27t q

	

27t
wy =27tR y=--;=- sinay ,

	

( 4b)

The inverse Fourier transform F-1 {b(co x , coy )} then represents the original object
function

1
f f

+
B(X, Y)=F-1{b(o)X, wy)}=2~

	

x
b(wx, wy)exp [-i(w,~X+wyY)] dwxdwy. (5)

To ensure that the image of the object produced by the microscope and termed B'
below is in all points identical with the object, the Fourier spectrum of the object
b(w x , wy) should remain unaffected by the instrument .

Even with the most perfect microscope this cannot be achieved . The least which
is likely to occur is a cut-off of the Fourier spectrum b(w x , wy) by the aperture stop . A
change may also be brought about by the wave aberrations of the microscope and, for
example, in phase-contrast microscopy by the phase plate annulus in the pupil .
Calculation of the image produced by the microscope must be based on a Fourier
spectrum changed by the instrument, which we term b'(wx, w„) . This changed
Fourier spectrum can be represented by the product of the undisturbed Fourier
spectrum with a function g(O)x, (0,.),

b'(wx, coy) =b(wx , wy)g(wx, (0 v )

	

( 6)

g is an important function of the microscope .
In the simplest caseg is a II-function or rectangular function if `manipulations in

the pupil' consist merely of the existence of an aperture stop so that the aperture
angle a has an upper limit but the instrument is free from opto-geometrical image
aberrations .

The II-function in the Fourier plane (that is the back focal plane of the objective)
is shown in figure 3 for the case of a rectangular aperture stop with the dimensions
2p o x 2q 0 . The aperture stop defines the upper cut-off frequency co g and the aperture
angle a o .

In terms of network theory the microscope is a low pass filter with cut-off
frequency wq or Rq . The cut-off frequency in the object plane is thus given, because

R
sin c o

q= ? (7)
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Figure 3. The II-function in the nomenclature of equations (1) to (4) and figure 2 .
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(8)

Its reciprocal is already the resolution limit of periodic objects in coherent light as
laid down by Abbe .

The image produced by the microscope is presented by the inverse Fourier
transform of b'(wx, w,,) f ,

B'(X, Y)=F-1{b'(wx,wY)}

1 f f 0
b(wX, w)g(wx , (oy ) exp [ - z(w xX+ w Y Y)] dw xdw Y .

	

(9)
2 7r

When the inverse Fourier transform of g(w x , w Y ) is represented by G(X, Y), it
follows that

G(X , Y) = F-1 {g(wx, coy ) }

-/7r I
+

x g(wx, wy) exp [ - z(w xX+ wy Y)] dw xdwy
-

f On the scale of the coordinates X, Y of the object plane . It applies to the corresponding
coordinates of the image plane X', Y where X'= JJX, Y'=/3Y ((3=lateral magnification, in
figure 2 : /3= -j2/fl). Abbe termed the light distribution in the Fourier plane b(p, q) or b(wx,
wy) "the primary image" and the microscopic image B'(X', r) in the image plane "the
secondary image" .
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The result will be the microscopic image B'(X, Y) as a convolution integral
according to the convolution theorem of the Fourier transform,

1

	

+°
B'(X, V)=2

	

B(X, Y)G[(X-X),(Y-Y)]dXdY .

	

(11)
-~

In words, the microscopic image is the result of a convolution of the object function
with the Fourier transform of the instrument function . The instrument function is
identical with the optical transfer function .

For ideal microscopic imaging the instrument function g(wx, (0 y ), that is the
optical transfer function, is a rectangular function fl, and its (inverse) Fourier
transform is the function sin x/x or sinc (x) . Using the terminology of this paper,
G(X, Y) has the form

2
G(X, Y) =nw8xw9Y sinc ((o 9X) sinc (w9 Y),

	

(12 a)

or

G(X, Y) = C sinc C X sin a ox sinc

	

Ysin a0y

	

(12 b)27r

	

27r

The function G(X) according to equations (12 a) and (12 b) is identical with the light
distribution function of the image of a point object with rectangular aperture,
because equations (10) and (12) also describe the Fraunhofer diffraction pheno-
menon with rectangular aperture for light emitted by a point object . We therefore
call G(X, Y) the 'point-image function' .

We note that in a microscope the image is produced by the convolution of the
object function with the point-image function . Consequently, when the formalism of
the Fourier transform is applied, Abbe's theory is presented in a consistent form .

Of the objects whose microscopic images Abbe calculated (seep . 1692), only one
example is treated below according to equations (11) and (12) .

Two narrow slits at a finite distance
(a) Coherent light

We follow Abbe in treating the problem one dimensionally in the X-direction .
Let the slits be represented as two 6-functions separated by a distance A,
symmetrical about the coordinate origin . If a is the angle of incidence of the
illumination and is set such that

k sin a=wo ,

	

(13)

it follows for the object function that

B(X) =6(X-X1)exp(-iwoX1)+6(X+XI)exp(iw0Xt ) .

	

(14)f

With the point-image function G(X) given by equation (12 a), it follows, for the
image function of the double slit after the convolution operation, that

B'(X) = {sinc [w9(X-X1)]+sinc [w 9(X+XI )] exp (2iw oX1 )} exp (-iw0X1) . (15)

1' The right-hand side of equation (14) should be multiplied by a factor having the same
dimensions of `light amplitude' (complex amplitude of one vector of the field) . For reasons of
simplicity this factor is set equal to 1 .
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The resulting intensity of the microscopic image of the two slits is obtained by taking
the squared modules of equation (15) . With X 1 =A/2 this yields

Since in the case of incoherent illumination all light fluctuations are completely
uncorrelated, interference between the two slits is impossible . The total intensity is
therefore the sum of the intensities of the two slits, which are, of course, independent
of the angle of illumination . Thus the object function can be applied to incoherent
illumination in the following way :

B(X)=6(X-X1)+b(X+X1)

	

(18)

The right-hand side of equation (18) should be multiplied by a factor having the
dimensions of light intensity . This factor is set equal to 1 . In contrast to equation (14)
B(X) in equation (18) is a function of the light intensity . The convolution integral
will then have the form

1
~ x

BI(X) =lreS= J(2n)

	

x 16(X-XI) + S(X+X1)}{sinc[wg(X-X)]}dX .

After evaluation we obtain

B'(X) =
Ires =

{sinc [wg(X-
A))2 +

{sinc Cwg(X + A
)]J 2 .

(20)

Abbe treated equations (16) and (20) for the real case with the then available
methods, and arrived, of course, at the same results . Equations (16) and (20) can
therefore be interpreted according to the original images in the book by Lummer and
Reiche: figure 4 shows the results for coherent illumination . It is obvious that in
incoherent light the double-slit structure is resolved with a slit separation of
A=),/(2 sin a) . In coherent light the double-slit structure with the same separation
is still not resolved . If in oblique coherent light the cosine in the third term assumes
the value 0 or -1, the double-slit structure is also resolved at a separation of A
=2/(2 sin a) .

A detailed discussion of the microscopic imaging of a double slit can be found in
the relevant literature (see, for example, [1, 13]) . We note that coherent illumination
parallel to the axis results in less resolving power than incoherent illumination and
that the r resolving power with incoherent illumination is only achieved for certain

7l
Ivessinc

Cw
g(X-

A)]

)j

	

c

2
+{sinc Cwg(X+

,)

,12

A A 27r
+ 2 sinc wg(X -2 sinc cog X+ 2 cos

A
A sin a . ( 16)

(b) Incoherent
In this case

light
we have a point-image function

(17)0,= (sinc (wgX)I2 .
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angles of incidence with coherent lightt . For the treatment of other microscopic
objects such as a slit of finite width or periodic objects, see in particular [1] .

	 Amplitudenkurven der Komponenten .
Resultierende Amplitudenkurve .
Resultierende Intensititskurve .

Figure 4. Microscopic image of two narrow slits with a separation A in coherent light parallel
to the axis according to Abbe (reproduced from [8]) . Top: slit separation A=2/(2 sin o) ;
and bottom : slit separation A= ;./sin a .

t With respect to the intensity curve for the image of a double slit, presented in figure 5,
with a 19 per cent dip in the centre A/(2 sin a) is since Abbe's time generally referred to as the
`limit of resolution' of the microscope. This is, however, a conventional but not a physical
definition . Whether or not two slits with a separation smaller or larger than )L/(2 sin a) are
resolved is dependent on the sensitivity of the detector . It is possible today with suitable
observation equipment to `resolve' double slit structures with much smaller slit separations .
The decisive finding is that the `resolving power' is proportional to A and inversely
proportional to sin a .

Niclttse1101cut)lleude spalle .

Amplitudeukur -e.

lntensitiitskurve .

	 .lmplitudeukurven
	 ° der CUatponeuteu .

2a X sin aA

2a X sin a
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X sin a

Figure 5 . Microscopic image of two narrow slits with a separation 0=)./(2 sin a) in
incoherent light according to Abbe (reproduced from [8]) .

4 . Conclusion
The most important result of Abbe's work on the theory of microscopic image

formation was undoubtedly the fact that he was the first to realize that the resolving
power of the microscope is also limited by the diffraction phenomenon and thus by
the objective aperture, a fact which had been known for decades as far as telescopes
were concerned .

Abbe's theory of image formation in the microscope is primarily a theory of
microscopic imaging in coherent light and in addition a theory of coherent imaging
in general . Microscopic imaging in incoherent light is treated along with the
microscopic imaging of double slits .

In Abbe's time the essential difference between image formation in coherent and
incoherent light was a completely new piece of knowledge, which represents another
important result of Abbe's efforts .

It was only on the foundation Abbe had laid that Zernike could develop the
principles of phase-contrast microscopy and Gabor, Leith and Upatnieks those of
holography and the modern techniques of coherent image processing, pattern
recognition, etc .

Abbe's contemporaries were unable to realize how much they were indebted to
him for his discovery . Until the 1920s depreciative comments were published over
and over again, which discounted the study of microscopic imaging in coherent light
as unimportant and impractical [14-19] .

Yet, the development proved the superior quality and importance of Abbe's
theory which goes far beyond microscopic imaging proper . From our point of view
the unfair criticism was altogether unfounded .

Une etude bibliographique historique des publications, entre 1873 et 1910, concernant la
theorie d'Abbe de la formation des images dans le microscope est presentee . On en donne,
ensuite, la theorie d'apres l'algorithme de la transformee de Fourier complexe .

Diese Arbeit gibt einen historischen Uberblick fiber Veroffentlichungen zur Abbeschen
Theorie aus den Jahren 1873 bis 1910 . Dabei wird Abbes Theorie mit Hilfe der komplexen
Fouriertransformation prasentiert .



Abbe's theory of image formation in the microscope

	

1701

References
[1] KOHLER, H ., 1982, Eine moderene Darstellung der Abbe'schen Theorie der

Bildenstehung im Mikroskop, part 1, Zeiss Information, Oberkochen, No . 93 1981,
part 2, Zeiss Information, Oberkochen, No . 94 1982, part 3 (mathematics), Carl Zeiss
reprint S 41-003 .

[2] ABBE, E., 1873, Beitrage zur Theorie des Mikroskops and der mikroskopischen
Wahrnehmung Arch. mikrosk.'Anat. Entw. Mech., 9, 413 . See also : ABBE, E., 1904,
Gesamm. Abh ., 1, 45, (Jena) .

[3] HELMHOLTZ, H., 1874, Die theoretische Grenze fur die Leistungsfahigkeit der
Mikroskope . Annln Phys ., special volume, 557 .

[4] ABBE, E ., 1880, Uber die Grenzen der geometrischen Optik . Minut. Jena . Ges. Med.
Natures ., pp . 71-109 .

[5] DIPPEL, L., 1882, Handbuch der allgemeinen Mikroskopie (Braunschweig) .
[6] CZAPSKI, S ., 1894, Die kunstliche Erweiterung der Abbildungsgrenzen . Handb . Phys ., 2,

96 .
[7] LUMMER, 0 ., 1909, Die Lehre von der strahlenden Energie (Optik), Vol . 2 (Third book of

X.X. Muller-Prouillet's Lehrbuch der Physik, tenth edition (Braunschweig) .
[8] LUMMER, 0 ., and REICHE, F ., 1910, Die Lehre von der Bildentstehung im Mikroskop von

Ernst Abbe (Braunschweig) .
[9] WOLFKE, M ., 1911, Uber die Abbildung eines Gitters bei kiinstlicher Begrenzung . Annln

Phys ., 34, 227 .
[10] WOLFKE, M., 1920, Uber die Moglichkeit der optischen Abbildung von

Molekulargittern . Phys. Z ., 21, 495 .
[11] BORN, M., 1965, Optik, second edition (Berlin, Heidelberg, New York : Springer-

Verlag), pp . 184-187 .
[12] BORN, M., and WOLF, E., 1964, Principles of Optics (Oxford: Pergamon Press),

pp . 419-424 .
[13] MICHEL, K ., 1950, Die Grundlagen der Theorie des Mikroskops (Stuttgart :

Wissenschaftliche Verlagsgesellschaft) .
[14] ALTMANN, R ., 1880, Zur Theorie der Bilderzeugung . Arch. Anat . Physiol . (Anat . Abt .),

pp . 111-184 .
[15] MANDELSTAM, L., 1911, Zur Abbe'schen Theorie der mikroskopsichen Bilderzeugung .

Annln Phys ., 35, 881 .
[16] LUMMER, 0., and REICHE, F ., 1912, Bemerkungen zur Abhandlung von L . Mandelstam

zur Abbe'schen Theorie der mikroskopischen Bilderzeugnung . Annln Phys ., 37, 839 .
[17] BEREK, M., 1924, Ist die Unterscheidung von selbstleuchtenden and nicht selbstleuch-

tenden Objekten fur die Auswirkungen im Abbildungsvorgang wesentlich . ZentZtg
Opt. Mech ., 45, 143 .

[18] BEREK, M., 1927, Entwicklung and gegenwartiger Stand der Lehre von der Abbildung
im Mikroskop . Marburger Sber ., 61, 251 .

[19] BEREK, M ., 1929, Uber die wirkliche Abbildung von Nichtselbstleuchtern and ihre
Grenzen . Z. Phys ., 53, 483 .


