
UNIT 4.1Proper Alignment and Adjustment of the
Light Microscope

Optical microscopes can be powerful tools in biomedical research and diagnosis if
properly aligned and adjusted. This is essential for optimal image quality and accurate
quantitative measurements. Video cameras, digital cameras, and electronic image proc-
essing can improve visibility of structural detail resolved by the microscope optics in
comparison to viewing by eye. However, the quality and accuracy of the image still
depends critically on proper microscope alignment and adjustment.

This unit presents protocols for alignment and adjustment of a typical research compound
light microscope for transillumination and epi-illumination imaging modes typically used
today in biomedical research. The transillumination light modes include bright-field,
phase-contrast, and differential interference contrast (DIC). The primary epi-illumination
mode is fluorescence microscopy.

The described procedures are for alignment of a research upright microscope (Fig. 4.1.1).
The procedures are applicable to inverted microscopes that have similar imaging and
illumination light paths to the upright microscope. In either case, the specimen image is
produced by an objective lens and the image is projected either to the eye with an eyepiece
or to a camera with (and sometimes without) a projection lens. One lamp attached to the
back of the microscope provides light for transillumination of the specimen through a
condenser lens (Fig. 4.1.2 and Fig. 4.1.3). Another lamp attached to the back of the
microscope provides light for epi-illumination of the specimen through the objective
using a mirror in a filter cube to bring the illuminating light into the objective light path
(Fig. 4.1.4). For both the transillumination and epi-illumination paths, there are field
diaphragms for controlling the specimen region illuminated and condenser diaphragms
for controlling illumination from the condenser. The lamps, the field diaphragm, and the
condenser diaphragm, as well as the condenser and the objective, must be properly
focused and centered for the best image formation. In addition, each different mode of
image formation has special optical components that also require alignment and adjust-
ment for optimal performance.

The first section in this unit (see discussion of Major Components of the Light Micro-
scope) describes the location and basic functions of the most important features of the
upright compound microscope. The second section (see discussion of Basic Imaging and
Köhler Illumination Light Paths For Bright-Field and Fluorescence Microscopy) intro-
duces the imaging and illumination light paths of the microscope and describes the
principles of Köhler illumination, which is the alignment used typically for both transil-
lumination and epi-illumination in the light microscope. Basic Protocol 1 lists steps in
microscope alignment for transmitted-light Köhler illumination. Basic Protocol 2 lists
steps in microscope alignment for epifluorescence Köhler illumination. Basic Protocols
3 and 4 provide brief descriptions of the principles of image formation and microscope
alignment for phase-contrast and differential interference contrast (DIC) microscopy;
these optical modes produce contrast of transparent specimens using transmitted-light
illumination. Support Protocol 1 deals with mating cameras to the microscope and
Support Protocol 2 deals with calibrating image magnification. Several procedures (see
Support Protocols 3, 4, and 5) are given for testing the optical performance of the
microscope; these also describe test specimens for microscope performance and their
sources. Finally, Support Protocol 6 deals with the care and cleaning of microscope optics.
The Commentary refers the reader to references that provide more comprehensive
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treatments of the basic modes and methods of light microscopy as well as advanced
microscope imaging methods like multiwavelength, confocal, or multiphoton imaging,
and electronic imaging techniques, including video and digital microscopy.

MAJOR COMPONENTS OF THE LIGHT MICROSCOPE

Familiarizing oneself with the components of the light microscope is best done using the
manual for the microscope as reference. Figure 4.1.1 provides a diagram of an upright
research compound light microscope equipped for both transmitted light and epifluores-
cence microscopy. Locate the following components on the microscope, identify their
adjustment screws (if applicable) and movements (e.g., condenser focus), and ascertain
that they appear correctly mounted. In this and the following sections, z is a direction
along the microscope axis; x and y are perpendicular directions.
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Figure 4.1.1 Diagram of the major component parts and centering screws for a research upright light microscope.
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Image-Forming Components

Specimen stage and focus
A mechanical carrier on the stage holds the specimen slide. Knobs control movement in
the x–y direction. Look for the vernier scales that mark the x and y positions. Rotatable
stages are typically used for DIC microscopy. The objective is usually fixed and the
specimen is focused by moving the stage along the z axis using coarse- and fine-focus
knobs on the microscope body. Check the scale on the fine focus. On research micro-
scopes, this is usually is 1 µm/unit.

Objectives and revolving nosepiece
Examine the different objectives on the nosepiece. Each objective is usually labeled with
the following designations: magnification (e.g., 60×); the degree of optical correction
(Apochromat is better than Fluor which is better than an Achromat); the label Plan (if
both the center and edges of the field are in focus); numerical aperture (NA, which
measures the half-angle of the cone of light from the specimen accepted by the objective;
Fig. 4.1.3); immersion medium to be used (e.g., air, oil, water, or glycerin between the
objective front lens and the specimen); coverslip thickness; optical tube length (previously
160 mm, currently infinity); and other special features like phase contrast, DIC, or long
working distance. Working distance refers to the distance from the front element of the
objective to the specimen. Working distance usually decreases with increasing objective
magnification and NA. Check that the objectives are mounted in series from the objective
of the lowest magnification to the objective of the highest magnification. It is usually best
to find the specimen or region of a specimen with a low-magnification objective, and then
swing in objectives with higher magnifications and shorter working distances. The
high-NA, short-working distance oil-immersion objectives often have the ability to lock
up the nosepiece when changing objectives. This prevents running the front element of
the objective into the mounting medium on the edges of the coverslip. Check that the
nosepiece is down for imaging.

Specimen slides and coverslips
Microscope condenser lenses are usually corrected optically for 1-mm-thick glass slides.
The objectives are corrected optically for coverslips with a thickness of 0.17 mm; no. 1.5
coverslips are on average this thick. The image quality decreases for thinner (e.g., no. 1)
or thicker (e.g., no. 2) coverslips, particularly for non–oil immersion (“dry”) objectives
with high NA. For oil-immersion objectives, this problem is not critical when the
refractive index of the oil and coverslip (∼1.515 to 1.52) match. Coverslips thinner than
no. 1.5 are often used with oil immersion, to allow greater range of focus.

Body tube
In the modern research light microscope, the imaging light leaving the objective and
nosepiece is unfocused and the image is projected to “infinity” (Fig. 4.1.2, left). This
infinity space above the objective allows insertion of filters without changing the focal
position of the image at the intermediate image plane. A positive focusing lens, the tube
lens, above the infinity space, is used to bring the imaging light into focus for the eyepieces
or camera.

Check for the following possible inserts in the infinity space of the microscope.

1. DIC prisms for the DIC objectives, which are usually right above the objective.

2. Analyzer; used for DIC microscopy (which should be removed from the light path
for bright field, phase-contrast, and fluorescence microscopy).
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3. Epi-illuminator filter-cube changer. These devices usually hold 2 to 4 filter cubes for
fluorescence microscopy, each of which contains an excitation filter, an emission
filter, and a dichroic mirror (Fig. 4.1.4) designed specifically for different fluoropho-
res. Check the numbers on the filter cubes and mark the corresponding positions on
the outside of the filter changer to identify the proper cube position for a given
fluorophore.

4. Magnification changer and Bertrand lens. Body tube magnifications are selected from
a turret, and possible values are 1.0×, 1.25×, 1.5×, and 2.0×. Often one position of
the turret contains a Bertrand lens. This lens is used in combination with the eyepieces
to produce a telescope view of the objective back focal plane (Fig. 4.1.2, far right).
This is an important device for checking that the lamp image is centered and in focus
during alignment for Köhler illumination, and for adjustment of the condenser
diaphragm (see discussion of Transillumination Components).

Beam switch
This device switches the light between the binocular and the camera port. Check for the
percentage of light in each direction. For fluorescence microscopy, it is important to be
able to send 100% of the imaging light either to the eye or to the camera.

Eyepieces
Eyepiece magnification to the eye is marked on the barrel (e.g., 10×). Note that there are
two and maybe three adjustments. The interpupillary distance for the eyes is adjusted by
grasping the bases of the eyepiece tubes and moving them closer or further apart. At least
one of the eyepieces is adjustable so that the eyes are parfocal.

Camera adapters
Check the type of camera adapter and whether it matches the detector. There are several
different types of camera adapters. One type uses an eyepiece tube (not the binocular tube)
and a projection eyepiece combined with a camera lens to project an image onto the
camera detector. This method is common in photographic film cameras (which use
≥35-mm film) and for some video cameras with large-size detectors (e.g., 1-in., equivalent
to 2.54-cm). The recent video and cooled slow and progressive scan charge-coupled
device (CCD) cameras have small detectors (≤2⁄3 in., equivalent to 1.7 cm). These cameras
require smaller projection magnifications or none—in the latter case the detector is
mounted at the intermediate image plane, the focal plane of the objective (Fig. 4.1.2), and
no eyepiece or projection lens is used.

Transillumination Components

Lamp and housing
The lamp is typically a low-voltage 100-W quartz halogen bulb with a tungsten-filament
light source and variable control. Some lamp housings have no adjustments for centering
the bulb; the socket is prefixed. Most lamp housings have x–y adjustments for the bulb
socket, while an advanced lamp housing also has a mirror in the back for reflecting an
image of the lamp back along the microscope axis. This mirror usually has adjustments
for x, y, and z positions of the mirror image of the lamp. There is usually a knob on the
side of the lamp housing for moving the collector lens back and forth along the z axis to
focus the tungsten-filament image onto the condenser diaphragm plane.

Diffuser and filters
A diffuser and other filters are often inserted in slots in the base of the microscope. The
diffuser helps spread the image of the source at the condenser diaphragm plane in order
to uniformly fill the condenser aperture. This is important for achieving high resolution.
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A heat-reflecting filter (e.g., BG 58) blocks infrared light. Video cameras, but not the eye,
are often sensitive to this wavelength of light. A green filter is frequently preferred for
illuminating living cells. High-efficiency interference filters with a 40-nm bandwidth
around 540 nm are often best. Various neutral-density (ND) filters, which are not
wavelength selective, are useful for attenuating light to cameras.

Field diaphragm
This is usually located just above or beneath the mirror that deflects the light up to the
condenser lens. It controls the specimen area illuminated by the condenser (Fig. 4.1.2,
left).

Polarizer
This is inserted below the condenser diaphragm for polarization and DIC microscopy.
Otherwise, it is removed from the light path.

Condenser focus knob
This translator moves the condenser along the microscope z axis to focus an image of the
field diaphragm on the specimen.

Condenser centering screws
There are usually two screws on the condenser carrier which move the condenser in an
x–y plane. These screws are used to center the image of the field diaphragm on the z axis.

Condenser diaphragm
The condenser diaphragm is located on the bottom of the condenser. It controls the angle
(NA) of the condenser cone of illumination of the specimen (Fig. 4.1.3).

Condenser turret
Condensers have turrets with inserts for special image-contrast techniques such as
phase-contrast and DIC microscopy. Each insert matches certain objectives. In phase-con-
trast microscopy, the inserts are annuli of different diameters designed to match the phase
ring in phase-contrast objectives (Fig. 4.1.5). For DIC, the inserts are typically DIC prisms
designed for certain objectives (Fig. 4.1.7). To see these inserts, as well as the opening
and closing of the condenser diaphragm, remove the condenser from the condenser carrier
by loosening the locking screen and turning it upside down.

Condenser lens
The condenser’s main function is to provide bright, uniform illumination of both the
specimen field (Fig. 4.1.2, right) and objective aperture (Fig. 4.1.3) for objectives with
different NAs. Check the markings on the condenser to see if it is designed for air (dry)
or oil immersion with the glass slide. Dry (no oil-immersion) condensers have NA values
of ≤0.9 and should not be used with immersion oil. Oil-immersion condensers usually
have NA values of 1.0 to 1.4 when using immersion oil.

Epi-illumination Components

Lamp and housing
The light source for the epifluorescence illumination is typically an HBO 50-W or HBO
100-W mercury arc lamp or a xenon lamp of similar wattage. These lamps need to be
handled with care because they can blow up if mistreated. Their glass envelopes should
be carefully cleaned with 70% ethanol before installation to prevent fingerprints or other
materials from inducing hot points that may result in fracturing of the bulbs. Look for the
adjustment screws to adjust the x–y position of the lamp. Look also for the rear mirror
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and its x, y, and z adjustment screws. Identify the focusing knob for the lamp collector
lens. Do not turn the lamp on until the bulb has been installed according to the manufac-
turer’s instructions, the collector lens has been inserted properly, and the lamp housing
has been installed on the back of the microscope. These lamps produce intense light, and
the mercury bulbs have large peaks in the UV range. Therefore, UV-protective glasses
should always be worn when handling and installing these lamps. The light intensity
decreases and the probability of explosion increases with the number of hours of operation
and lamp starts. Check the timer on the lamp power supply to see that the recommended
limits are not exceeded.

Shutter
Photobleaching is a big problem in fluorescence microscopy. A shutter is used to block
the light from the specimen when not taking exposures on a camera or viewing by eye.

Filters
A heat-reflecting filter is used to prevent infrared illumination of the specimen and to
keep infrared scattered light from reaching the camera. Neutral-density (ND) filters are
used to reduce the light intensity of fluorescence illumination by the amount indicated on
each filter.

Epi-illumination condenser diaphragm
This diaphragm provides variable adjustment of the illumination intensity. Some micro-
scopes lack this diaphragm.

Epi-illumination field diaphragm
This diaphragm controls the area of the specimen illuminated. Look for the centering
screws that control the x–y position of the field diaphragm.

Filter cubes
See discussion of Image-Forming Components.

BASIC IMAGING AND KÖHLER ILLUMINATION LIGHT PATHS FOR
BRIGHT-FIELD AND FLUORESCENCE MICROSCOPY

The second major step in learning proper alignment of the light microscope is to
understand the basic image-forming and Köhler illumination light paths and the functions
of the key optical components and diaphragms. These are outlined in Figure 4.1.2, Figure
4.1.3, and Figure 4.1.4.

Imaging-Ray Paths
The upper left section of Figure 4.1.2 shows ray paths for the image-forming light from
the objective. The objective, in combination with the tube lens, produces a real, magnified
image of the specimen at the intermediate image plane. The eyepiece provides a second
stage of magnification to the eye. The magnification to the eye is the product of objective
magnification and eyepiece magnification multiplied by any magnification provided by
additional lenses in the body tube of the microscope between the objective and the
eyepieces.

When a camera detector—film, video, or charge coupled device (CCD)—is mounted at
the intermediate image plane, the magnification to the camera is the magnification
produced by the objective and body tube. When a camera is mounted above an eyepiece,
then the unfocused light leaving the eyepiece must be focused onto the camera detector
by a camera lens, which modifies the total magnification to the detector. Special adapters
(see Image-Forming Components, Camera adapters) are also available for projecting the

Current Protocols in Cell Biology

4.1.6

Proper Alignment
and Adjustment

of the Light
Microscope



objective image onto a camera detector with magnification, but without the need for an
eyepiece.

Transillumination Ray Paths
In the illustration of the standard Köhler method (Fig. 4.1.2), trace the illumination ray
paths for a bright-field microscope aligned for Köhler transillumination (right side). A
point on the light source is focused by the lamp collector lens onto the front focal plane
of the condenser lens, where the condenser diaphragm is located. This light is projected,
out of focus, through the specimen by the condenser lens, producing uniform illumination
of the specimen. The objective collects the unfocused illumination light and brings an
image of the light source into focus at its back focal plane, which is at the back aperture
of the objective (Fig. 4.1.3). The light source is again out of focus at the intermediate
image plane and at the retina of the eye or the detector of the camera. In between these
two points, the light source is in focus at the exit pupil of the eyepiece, at a position ∼15
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Figure 4.1.2 The imaging and illuminating light paths for a bright-field microscope aligned for
transmitted light Köhler illumination. Modified from Keller (1998).
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mm above the eyepiece. This position is also called the eyepoint, the position of eye
placement above the eyepiece (Fig. 4.1.2, right).

The condenser diaphragm controls the NA (cone angle) of specimen illumination by the
condenser lens (Fig. 4.1.3). Opening the diaphragm increases the aperture of illumination,
which increases both the light intensity and resolution in bright-field light microscopy
(see Support Protocol 3). Note on the right side of Figure 4.1.2 that the image of the
condenser diaphragm is in focus where the lamp image is in focus along the microscope
axis, at the objective back focal plane and the exit pupil of the eyepiece.

Trace the imaging light rays from the field diaphragm through the microscope (Fig 4.1.2,
left). Note that the field diaphragm controls the specimen area illuminated by the
condenser. Note also that the field diaphragm is placed between the lamp collector lens
and the condenser lens in a plane where the lamp image is out of focus (compare Fig.
4.1.2, left and right). When the condenser lens has focused the image of the field
diaphragm onto the specimen, then the field diaphragm will be in focus with the specimen
at the intermediate image plane and at the eye or detector.

Epi-illumination Ray Paths

Figure 4.1.4 shows the optical alignment for an epi-illuminator and Köhler illumination
through the objective. As in transillumination (Fig. 4.1.2), the light source is focused by
a collector lens onto the condenser diaphragm of a condenser lens in the light path. The
condenser lens illuminates a field diaphragm. Another lens collects this light and projects
it off a reflective mirror into the objective. The image of the light source is focused at the
back focal plane of the objective so that it is out of focus at the specimen plane. In
epifluorescence microscopy, filter cubes containing dichroic mirrors are used in combi-
nation with excitation and emission filters to efficiently reflect the excitation light into
the objective and transmit to the eyepiece or camera only the longer-wavelength fluores-
cent light emitted from the specimen (see UNIT 4.2 and Taylor and Salmon, 1989).

BASIC
PROTOCOL 1

ALIGNMENT FOR KÖHLER ILLUMINATION IN BRIGHT-FIELD,
TRANSMITTED LIGHT MICROSCOPY

The following procedures assume that the positions of the quartz-halogen tungsten
filament and collector lens are adjustable. Inexpensive, non-research compound micro-
scopes may have the illuminator built into the stand, with no adjustment for the lamp.
Such microscopes depend on a ground-glass filter for even illumination. For these
microscope stands, skip steps 2, 3, 4, and 8.

Focus the light source
1. If possible, remove the diffusion filter in the transillumination pathway during

alignment so that a crisp image of the light source can be viewed at the condenser
diaphragm plane and at the objective back focal plane. When alignment is complete,
reinsert the diffusion filter.

2. Center and focus the lamp filament near the condenser diaphragm plane. Remove the
condenser lens. Place a sheet of lens paper on the microscope stage. Close down the
field diaphragm and adjust the intensity of the lamp so that the lens paper is
moderately illuminated. Use the lamp-focusing knob to move the condenser lens (or
lamp) along the z axis until an image of the filament is in focus on the lens paper.
Roughly center the lamp on the microscope axis with the adjustment screws on the
lamp housing, then adjust the mirror image (if there is a mirror) using its adjustment
screws on the lamp housing.
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3. Place the lens paper on the condenser carrier and raise the condenser carrier until it
is ∼20 mm from the top of the stage.

This is the approximate position of the condenser diaphragm when a condenser is installed
and in focus.

4. Refocus the lamp and mirror images at this position of the lens paper.

If there is no mirror image, center the lamp image. If there is a mirror image, then position
the images so that they sit side by side to fill the condenser aperture. Remove the lens paper
and replace the condenser.

Focus for low-power viewing
5. Obtain an in-focus image of a specimen with the low-power objective (10× or 16×)

by placing a test specimen that absorbs light on the stage (e.g., stained muscle section;
see Table 4.1.1).

The focus position can be estimated from the working distance of the objective lens. For a
standard 10× lens, this is ∼4 mm. So, use the coarse focus to bring the specimen to ∼16
mm from the coverslip by viewing the objective position from the side of the microscope.

6. Move the condenser lens up close to the lower surface of the slide and open the field
and condenser diaphragms all the way. Look down the eyepieces, and use the coarse-
and fine-focus knobs to bring the specimen into sharp focus.

7. Focus the image of the field diaphragm centered on the specimen by adjusting the
condenser x–y screws and the condenser focus. Initially close down the field dia-
phragm until an edge of the image can be focused by the condenser, then close the
field diaphragm further as the image is centered, using the x–y translation screws.

Usually, the field diaphragm is opened just enough to match the field of view in the eyepiece
or the camera. However, the best image contrast is obtained if the field diaphragm is opened
just enough to illuminate the region of interest. This eliminates the presence of scattered
light from outside the region of interest.

8. Center an in-focus image of the lamp and mirror images at the objective back focal
plane using the focus and adjustment screws on the lamp housing. View the objective
back aperture (the position of the back focal plane; Fig. 4.1.3) by using the Bertrand
lens in the magnification changer in combination with the eyepieces, by replacing
one eyepiece with a telescope, or by simply removing one eyepiece and peering down
the body tube. Open the condenser diaphragm all the way. Readjust the collector lens
and the mirror so that the lamp images are in focus and sit side by side to fill the
objective aperture.

This is a rough adjustment with the low-power objective and will need to be fine-tuned
using the objective with the highest NA.

Table 4.1.1 Suppliers for Items Used In Light Microscopy

Test specimen Supplier

Hematoxylin/eosin-stained skeletal muscle Carolina Biological Supply
Diatom test plate Carolina Biological Supply
Squamous cheek cells Freshly prepared (see Support Protocol 4)
Stage micrometer Fisher
Red, green, and blue fluorescent tissue culture cells Molecular Probes
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9. Adjust the opening of the condenser diaphragm so that the diameter of its image at
the objective back focal plane (see far right of Fig. 4.1.2; also see Fig. 4.1.3) is slightly
less than the diameter of the objective back aperture.

Some research condensers also have centering adjustments for the condenser diaphragms.
The image of the condenser diaphragm should be centered in the objective back aperture.

10. Adjust the light intensity for comfortable viewing of the specimen by adjustment of
the light-source intensity, either using the power-supply rheostat or by inserting
neutral-density filters in the illumination light path.

The microscope is now adjusted properly for the low-power objective.

Adjust for 40× viewing
11. Switch the turret to the 40× high-dry objective.

Note that because of parfocal objective design the specimen is almost in focus. Focus on
the specimen with the fine focus.

12. Focus and center the field diaphragm with the condenser focus and the condenser-
carrier x–y adjustment screws.

13. View the objective back aperture (Fig. 4.1.3).

Notice that the image of the condenser diaphragm adjusted for the low-power objective is
only about half the diameter of the 40× back aperture. The ratio of the diameter of this
image to the diameter of the objective back aperture is equal to the ratio of the NA of the
condenser illumination to the NA of the objective (Fig. 4.1.3). When the condenser
illumination NA equals the objective NA, the aperture of the objective is filled with light
and maximum resolution will be achieved for the objective NA (see Commentary).

14. Adjust the condenser diaphragm so that the condenser illumination NA just about
matches the objective NA.

Each time objectives are changed, these procedures should be repeated.

θcond

θobj

NAcond = nsinθcond

NAobj = nsinθobj

condenser
diaphragm

objective
back focal
plane

Figure 4.1.3 Numerical aperture (NA) of objective light collection and condenser illumination. The
objective numerical aperture (NAobj) depends on the angle of the cone of light from the specimen,
which is accepted by the objective aperture while the numerical aperture of condenser illumination
(NAcond) is controlled by the condenser diaphragm and limited by the maximum NA of the condenser
when the condenser diaphragm is wide open.
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Adjust for high-power viewing
15. Rotate the nosepiece so that the high power (60× to 100×, NA 1.25 to 1.4) oil-im-

mersion lens is coming into place, but stop before it clicks into place. Place a small
drop (∼2 mm diameter) of immersion oil directly onto the coverslip above the point
upon which the condenser beam is focused.

This oil drop must be free of air bubbles and dirt. The refractive index of the immersion oil
should be close to that of the glass coverslip.

16. Complete the rotation of the nosepiece so that the oil-immersion objective clicks into
place. Lower the objective nosepiece if appropriate.

The space between its front lens and the coverslip is now filled with immersion oil.

IMPORTANT NOTE: Use only the fine adjustment knob when working with the oil-im-
mersion lenses.

17. Remove the eyepiece (or use the telescope or Bertrand lens) and inspect the back
aperture of the objective. Open the condenser diaphragm as much as possible to try
and match its image with the objective aperture (Fig. 4.1.3).

This will be impossible if the condenser is dry and not designed for oil immersion, since
dry condensers have NA ≤0.9 and the relative size of the image of the condenser aperture
or condenser diaphragm seen in the objective back focal plane is given by the ratio of
NAcond/NAobj (Fig. 4.1.3).

18. View the objective back aperture and tune up the focus and position of the lamp
images so that they fill the objective aperture with light as uniformly as possible.

19. Replace the eyepiece (or remove the Bertrand lens) and examine the specimen. Adjust
the field diaphragm until its margins just match the field of view.

With inexpensive condensers, the image of the edge of the field diaphragm will not be in
good focus, even at the optimum position. If a condenser designed for oil immersion is
being used, enormous improvement in the field iris image can be achieved by oil immersion.

20. Oil the condenser (if possible) to achieve the highest resolution and image quality.
To oil a condenser, rotate the objective out of the way, remove the slide, oil the
condenser (it takes much more air-bubble-free oil than the objective), then replace
the slide and refocus the objective.

Before oiling the condenser, make sure it is not designed to be a “dry” condenser by
checking that it is marked with an NA >0.9.

The image of the field diaphragm should now be much sharper when in focus and centered.

21. Look at the objective back aperture. Again, tune up the focus and position of the lamp
images so that they fill the objective aperture with light as uniformly as possible.

After oiling, the aperture should be filled by the condenser illumination when the condenser
diaphragm is wide open.

Notice also that viewing the objective back aperture is the best way to see if air bubbles
have become trapped in the oil. If so, carefully wipe off the oil with lens paper and repeat
steps 15 through 21.

22. Reinsert the diffusion glass in the illumination light path.

This will reduce light intensity, but make the illumination of the objective aperture more
uniform.

23. When finished for the day, use lens paper to remove excess oil from the objective and
condenser lens surfaces to prevent dripping on specimens.

It is not necessary, however, to completely clean oil from the optics after every use (see
Support Protocol 6).
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BASIC
PROTOCOL 2

ALIGNMENT OF THE EYEPIECES

The binocular usually has adjustments for the inter-eyepiece distance and visual acuity
in each eye. The goal is for the image to be in focus for each eye without any eyestrain
or discomfort. Only the left eyepiece tube or eyepiece is adjustable on a typical micro-
scope. However, if the microscope has a target reticle in the microscope stand that can be
rotated into view, then usually both eyepieces are adjustable.

1. With a low-power objective (10× or 16×), focus on a stained specimen placed on the
stage of the microscope (e.g., stained muscle section, see Table 4.1.1) and align the
microscope for Köhler illumination.

2. Move the bases of the eyepiece tubes together or apart to set the proper interpupillary
distance for your eyes.

3a. If the microscope has a target reticle: Rotate the reticle into the field of view. Close
the left eye and use the diopter-adjustment ring on the right eyepiece until the target
is in sharp focus for the right eye. Then close the right eye and use the diopter-ad-
justment ring on the left eyepiece until the target is in sharp focus for the left eye.
Remove the target to view the specimen.

3b. If the microscope has no target reticle: Set the right eyepiece tube to the inter-eyepiece
setting (if possible). Close the left eye and bring into sharp focus a structural detail
near the center of the field of view with the right eye. Close the right eye and use the
diopter-adjustment ring on the left eyepiece tube to bring the specimen detail into sharp
focus for the left eye. With both eyes open, fine tune the focus of the left eyepiece tube.

BASIC
PROTOCOL 3

ALIGNMENT FOR KÖHLER ILLUMINATION IN EPIFLUORESCENCE
MICROSCOPY
The eye is most sensitive to green light. Hence, the following protocol is best done using
a filter cube that produces green excitation light (e.g., a filter cube for rhodamine).

Focus the lamp
1. Remove one objective, and rotate the nosepiece so the open position is centered on

the microscope axis. Place a white card on the microscope stage, on top of supports
that position the card at ∼2 to 3 cm from the nosepiece.

This is approximately the position of the objective back focal plane, where the images of
the light source should be in focus and centered after alignment (Fig. 4.1.4).

Some microscopes have a special device for lamp alignment. It screws into the objective
nosepiece and projects an image of the epi-illumination arc and electrodes onto a small
diffusion screen within the barrel of the device.

2. Install the mercury bulb in the lamp housing and attach the lamp housing on the back
of the microscope according to the manufacturer’s instructions.

3. Turn on the power source and ignite the lamp.

It takes ∼10 min for the arc to brighten.

CAUTION: It is usually a good idea to make sure computers in the vicinity are turned off
before starting the lamp because the high voltage pulse used to ignite the arc plasma may
damage the electronics. Laboratory personnel should protect their eyes against UV light
from the lamp.

4. Close down the field diaphragm and open the condenser diaphragm (if there is one)
all the way.
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5. On the diffusion glass screen or on the white card on the stage, the image of the arc
between the tips of the two electrodes should be visible. Use the lamp focusing knob
to obtain an in-focus image of the lamp arc and electrodes. Use the lamp x–y
adjustment screws to approximately center the image of the arc and electrode tips
(see Figure 4.1.2).

6. If there is a lamp mirror, use its adjustment screws to focus the mirror image of the
arc and electrode tips, centered on the target.

Often the primary image and the mirror image of the arc are adjusted side-by-side and
slightly overlapping, but centered on the microscope axis.

Focus the field diaphragm
7. Place a test fluorescent specimen (see Table 4.1.1) on the stage and rotate the objective

nosepiece to a low-power objective. Select the appropriate filter cube for the fluores-
cent specimen. Open up the epi-illuminator field diaphragm all the way. Open the
shutter and view the specimen.

8. Focus the specimen, then close down the field diaphragm until an edge comes into
the field of view. Use the x–y adjustment screws for the field diaphragm to center the
field diaphragm image within the field of view.

9. Close down the field diaphragm until only the region of interest is illuminated.

This prevents photobleaching of areas outside the region of interest and reduces the amount
of scattered fluorescent light in the image from outside the region of interest.

arc image

eye

eyepiece

intermediate
image plane

excitation
filter

field
diaphragm

condenser
diaphragm

collector lens

arc
lamp

arc image

tube lens

emission filter

dichromatic
mirror

objective back
focal plane

specimen

objective lens

filter cube

Figure 4.1.4 Microscope alignment for epifluorescence Köhler illumination.
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10. Switch to a high-power objective. For an oil-immersion objective, place a small drop
(∼2 mm diameter) of immersion oil directly onto the coverslip above the region of
interest. Carefully swing in the objective. Open the shutter and focus on the specimen.
Readjust the size and centration of the field diaphragm.

This oil drop must be free of air bubbles and dirt.

11. To prevent photobleaching, be sure to close the epi-illumination shutter when not
viewing or taking camera exposures.

BASIC
PROTOCOL 4

ALIGNMENT FOR PHASE-CONTRAST MICROSCOPY

Phase-contrast microscopy is often used to produce contrast for transparent, non–light-
absorbing, biological specimens. The technique was discovered by Zernike, in 1942, who
received the Nobel prize for his achievement (Zernike, 1942, 1955, 1958). The last of
these references describes the principles of phase contrast and provides an excellent
introduction to the wave optics of image formation, resolution, and contrast in the
microscope.

The phase-contrast microscope is a bright-field light microscope with the addition of
special phase-contrast objectives (Fig. 4.1.5) containing a phase plate or ring and a
condenser annulus instead of a diaphragm; the annulus is usually located on a condenser
turret because it has to be selected for different objectives. The microscope optics are
usually aligned for bright-field specimen illumination by the standard Köhler method.
However, there is no condenser diaphragm to adjust. Instead, the phase annulus must be
selected and adjusted properly. Modern phase-contrast objectives have a phase plate
containing a ring in the back focal plane within the barrel of the objective. This ring

ring

phase plate

annulus

objective
back focal plane

objective lens

specimen

condenser lens

condenser turret

illumination light

Figure 4.1.5 Illumination light path through the condenser annulus and objective phase ring in a
microscope aligned for phase-contrast microscopy.
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absorbs and advances the phase of the light passing through it by 1⁄4 wavelength in
comparison to light passing through the rest of the objective aperture. For each phase
objective, there is a corresponding annulus in the condenser turret that has about the same
relative size as the phase ring in the objective. Light passing through this annulus passes
through the phase ring in the objective when the annulus is selected and aligned properly.
Light scattered by the specimen mainly passes through the objective aperture outside the
phase ring. Light scattered from a thin transparent specimen is ∼1⁄4 wavelength retarded
from the unscattered illumination light. The additional 1⁄4 wavelength retardation between
the scattered and illumination light produced by the objective phase ring makes the
scattered and illumination light 180° out of phase. They destructively interfere with each
other at the image plane to produce the “dark” contrast of structural detail typical of phase
contrast images of biological specimens.

Because the phase annulus and the phase ring reduce the intensity of the background light,
a bright illuminator—e.g., a 100-W quartz-halogen illuminator—is necessary at high
magnifications (because image intensity decreases as 1/magnification2). For living cells,
heat reflection and green illumination filters should be used.

To examine the objective phase ring and matching condenser phase annulus, remove the
low- and medium-power phase objectives and the phase condenser from the microscope.
View the phase ring (phase plate) within the objective by looking in the back end. The
phase ring is located at the position of the objective back focal plane; its diameter is usually
∼2⁄3 that of the objective aperture. Note that it is situated within the objective body and is
visible because it absorbs light. Locate the annulus for each objective in the condenser
turret. The annulus is located at the condenser diaphragm plane, which is situated at the
condenser front focal plane. Notice that as the objective NA increases, the diameter of
the corresponding annulus in the condenser turret increases. The NA of condenser
illumination from an annulus is designed to match that of the phase ring in the corre-
sponding objective.

Replace the condenser on the microscope and illuminate with white light. Hold a piece
of tissue paper near the top of the condenser and examine the illumination cone. Notice
that it is an annular cone of illumination. Change the annulus from the setting for the
low-power objective to the 40× setting. Note that the NA or angle of illumination
increases. Points of illumination further from the central axis in the condenser diaphragm
plane produce higher-aperture rays passing through the specimen.

Perform alignment using the following steps.

1. Align the microscope for bright-field Köhler illumination using the low-power phase
objective (10× or 16×) and a cheek cell preparation for the specimen (see Support
Protocol 4).

The cheek cell specimen is an excellent transparent test specimen for alignment of the
microscope for phase contrast and DIC. The cheek cells are transparent and only barely
visible by bright-field illumination. To find the plane of focus in bright field, initially close
down the condenser diaphragm and look for the edges of air bubbles in the preparation.
These edges scatter much light and appear dark in the image.

2. Align the condenser annulus with the phase ring by rotating the condenser turret to
the position where an annulus matches the phase ring in the objective; use the
telescope, your eye, or the Bertrand lens to view the objective back aperture.

As the condenser turret is rotated, notice in the objective back focal plane the images of
the different-diameter annuli designed for the different numerical aperture objectives. The
correct annulus may not be properly aligned with the objective phase ring.
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3. Use the adjustment screws in the condenser (and the special tools if necessary) to
move the annulus in the x–y plane to achieve alignment with the phase ring in the
objective.

Note that the phase ring is slightly wider than the image of the correct annulus. It is critical
that the image of the annulus be within the phase ring, but it is not critical if it is very
slightly off center.

4. When the objective phase ring and condenser annulus are aligned, view the specimen
and properly adjust the focus and centration of the field diaphragm.

Notice that if the phase ring and annulus are slightly misaligned (rotate the turret slightly),
the background light intensity goes up. This is because the phase ring is designed to absorb
much of the illumination light. The unscattered illumination light becomes closer to the
intensity of the light scattered by the specimen, which passes through the objective aperture
outside of the phase ring. Minimizing the background light intensity while viewing the
specimen image can also be used to align the annulus with its phase ring or to touch up
the alignment done by viewing down the body tube.

5. Switch to the 40× phase objective and then the high-power 60× or 100× phase
objective (NA 1.25 to 1.4) and repeat steps 1 to 4.

It is necessary to increase light intensity at the higher magnifications. It should be possible
to see the ridges on the cell surface (see Fig. 4.1.6 for a DIC image of the ridges). Notice
the “phase halos” at discrete edges, a problem that limits conventional phase contrast in
high-resolution imaging.

BASIC
PROTOCOL 5

ALIGNMENT FOR DIC MICROSCOPY
Since its introduction in the late 1960s (e.g., Allen et al., 1969), DIC microscopy has been
popular in biomedical research because it highlights edges of specimen structural detail,
provides high-resolution optical sections of thick specimens—including tissue cells, eggs,
and embryos—and does not suffer from the “phase halos” typical of phase-contrast
images. See Salmon and Tran (1998) for details of image formation and video-contrast
enhancement.

The DIC microscope is a bright-field light microscope with the addition of the following
elements (Fig. 4.1.7, middle): a polarizer beneath the condenser; a DIC beam-splitting

Figure 4.1.6 DIC images of a human cheek cell test specimen. (A) Low magnification of
cheek cell preparation with a 20× objective. Bar = 20 µm. (B) High-resolution image of the
surface of the cell at the top of (A) using a 60×/(NA = 1.4) Plan Apochromat objective and
matching condenser ilumination. The ridges on the cell surface are often diffraction limited in
width. Bar = 5 µm. From Salmon and Tran (1998), reprinted with permission from Academic
Press.
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prism (Nomarski or Wollaston) in the condenser turret; a DIC beam-combining prism
(Nomarski) just above the objective; an analyzer above the objective prism in the infinity
body tube space; a compensator after the polarizer or before the analyzer in some
microscopes (not shown in Fig. 4.1.7); and a rotatable stage. The microscope optics are
usually aligned for bright-field specimen illumination by the standard Köhler method.

The polarizer, which produces plane-polarized light (Fig. 4.1.7, left), is typically oriented
with its transmission azimuth in an east-west direction facing the front of the microscope.
Polarizers with high transmission efficiency are preferred. Polarizers are usually high-
quality polaroid material held between thin optical glass flats. Another polarizer is used
as an analyzer. The transmission azimuth of the analyzer is oriented north-south at 90°
with respect to the polarizer azimuth to produce extinction of the illumination light in the
absence of the DIC prisms.

The specimen is held on a rotating stage. Contrast depends on orientation, and frequently
specimens must be reoriented to achieve maximum contrast of the structures of interest.
Either the stage or the objective and condenser must be centerable.

For the highest sensitivity, the objective and condenser lenses should be selected free of
birefringence (Inoué and Spring, 1997). Rectifiers can be used to correct for the rotation
of the plane of polarization of light which occurs at the periphery of lens surfaces (Inoué
and Spring, 1997).
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Figure 4.1.7 The optical system for DIC microscopy. From Salmon and Tran (1998), reprinted with
permission from Academic Press.
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Figure 4.1.7 outlines the principles of DIC image formation and contrast. The DIC
beam-splitting prisms are located at the condenser diaphragm plane, just above the
polarizer in the condenser turret. Objectives of different magnification and/or NA usually
require condenser prisms of different optical characteristics.

The condenser prism splits the light coming from the polarizer into divergent polarized
light wavefronts whose planes of polarization are orthogonal to each other and at 45° with
respect to the initial plane of polarization (Fig. 4.1.7, left). The divergent beams are
converted by the condenser into two wavefronts, which pass through the specimen
separated laterally from each other in the direction of the prism wedge (the shear direction,
Fig. 4.1.7, middle) by a tiny amount that is usually less than the resolution limit of the
condenser-objective lens combination (Fig. 4.1.7, right). These two wavefronts are
recombined just above the objective by a beam-combining prism. Often, each objective
has its own prism so that it accurately matches the action of the condenser prism. In some
microscopes, there is one beam-combining prism for all objectives and a different
condenser prism for each objective. Check which is the case for your microscope.

DIC image contrast depends on the “compensation” or “bias retardation” (∆) between the
two wavefronts along the microscope axis (Fig. 4.1.7, right). When the objective beam-
combining prism is perfectly aligned with the condenser beam-splitting prism and there
is no compensation (∆ = 0), the background light is extinguished and the edges of objects
are bright against a black background (Fig. 4.1.7, upper right). When one wavefront is
retarded relative to the other by ∆, this increases the optical path (OP) between the
wavefronts (Fig. 4.1.7, middle right) and brightens the background light. One edge of an
object becomes brighter than the background while the opposite edge becomes darker
(Fig. 4.1.7, upper right). This produces the “shadow cast” appearance of DIC images.
Reversing the sign of retardation, reverses the contrast of the specimen edges.

In some microscopes, the objective beam-combining prism (Fig. 4.1.7, middle) is used
as a compensator by translating the prism in the direction of prism wedge away from the
position of background light extinction. One direction produces positive while the other
produces negative retardation (∆). In other microscopes, both the objective and condenser
prisms are fixed at positions that produce background light extinction, and typically a
deSenarmont compensator (a birefringent quarter-wave retarder in combination with a
rotatable polarizer or analyzer; Inoué and Spring, 1997) is inserted just above the polarizer
or beneath the analyzer.

Bright illumination sources are required for high magnification because of the crossed
polarizer and analyzer; at least the 100-W quartz-halogen illuminator is usually needed.

To examine the DIC prisms, remove the objective prisms and the DIC condenser from the
microscope. Examine the objective prism. Notice that it is very thin and wide enough to
cover the objective aperture. Also notice if there is a screw that can be used to translate
the prism back and forth in one direction across the objective aperture. Examine the prisms
in the condenser turret. Notice that there are different prisms for low- and high-NA
objectives. The highest-resolution (NA) objectives often have special prisms designed
only for the optical properties of that objective. In aligning the microscope for DIC, be
careful to use the condenser Wollaston prism that matches the objective in use. Reinstall
the condenser.

Steps 1 to 6 in the following procedure are for the initial alignment of the microscope.
Once this is done, then begin at step 7 for routine use.
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Perform initial alignment
1. Align the microscope initially for Köhler illumination using the low-power objective

and the cheek cell preparation. Again look for the bright air-bubbles in the preparation
to find the specimen plane.

2. Check that the polarizer is oriented with its transmission azimuth in an east-west
direction as determined facing the front of the microscope (look for the line or
double-headed arrow on the polarizer mount). Rotate the deSenarmount compensator
(if there is one) so that it is at its zero position (no compensation).

3. Remove the objective prism and rotate the condenser turret to an open position. Make
sure that the analyzer transmission azimuth is crossed to the polarizer by checking
that the background light is at extinction.

This exercise is best done with the brightest light position of a 100-W quartz-halogen
illuminator.

4. Insert the objective DIC prism (observe caution as the image will be very bright).
Observe the extinction fringe in the middle of the prism (you must use the telescope,
remove an eyepiece, or insert the Bertrand lens to focus on the objective focal plane).
Make a drawing of your view of the fringe in the back aperture.

The fringe should be at 45° with respect to the analyzer-polarizer transmission azimuths.

5. Remove the objective DIC prism and rotate into place the condenser prism that
matches the objective. Observe the objective back focal plane.

The orientation of the fringe should match the orientation of the extinction fringe for the
objective prism in your drawing.

6. Insert the objective prism and observe the objective back focal plane. Rotate in the
other condenser prisms and notice that the extinction fringe is no longer spread across
the objective aperture. Rotate in the correct condenser prism.

If the condenser and objective prisms are properly matched and oriented in the same
direction, the fringe should become spread across the objective aperture (a dark cross will
still occur in high-power, unrectified objectives; Inoué and Spring, 1997).

Align for specimen viewing
7. View the specimen with the correct objective and condenser prisms in place. Translate

the objective prism (or rotate the deSenarmount compensator if the objective prism
is fixed) to induce a retardation (∆) between the two wavefronts to brighten the
background light and make the edges of the cell appear shaded. If possible, rotate the
specimen and observe that contrast is directional—45° with respect to the analyzer-
polarizer orientations.

As the upper prism is translated (or the deSenarmount compensator is rotated) to compen-
sation of opposite sign, the initially bright edges become darker and the initially dark edges
become brighter than the background.

8. Adjust for proper bright-field, transmitted-light Köhler illumination.

The quality of the DIC image depends critically on the field diaphragm being sharply
focused on the specimen (Fig. 4.1.2, left), since this puts the condenser prism in the proper
place. The highest possible resolution is achieved when the condenser diaphragm is
adjusted to match the diameter of the objective aperture (view the objective back focal
plane during this adjustment).

Optimum edge contrast is produced when the retardation between the wavefronts is
adjusted to extinguish the light coming from one set of edges in the specimen. Further
retardation increases light intensity, but not contrast to the eye. When using video cameras,
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it is often important to view the specimen by eye and adjust the compensation for best
contrast, then change illumination intensity to provide the camera with enough light for
good image quality.

9. Repeat steps 2 to 8 for the other objectives.

Once you are sure of the correct prisms and their orientation, then only steps 7 and 8 are
necessary for each objective.

SUPPORT
PROTOCOL 1

MATCHING MICROSCOPE MAGNIFICATION TO DETECTOR
RESOLUTION

This procedure uses the diatom test slide (see Table 4.1.1 for supplier information). For
more details on matching a camera to the microscope see Hinsch (1998) or Inoué and
Spring (1997).

1. Look down the eyepieces and obtain an in-focus image of the frustrule pores of the
diatom Pleurosigma angulatum (Fig. 4.1.8, number 6 in panel A) using 40×/(NA
∼0.7) phase-contrast or DIC and proper Köhler illumination.

The pores should be clearly visible by eye.

2. Project the diatom image onto the faceplate of a video or CCD camera.

AA

D

B

C

Figure 4.1.8 (A) The diatom test plate. The rows of pores are spaced in the silica shell by
∼0.25 µm in Amphipleura pellucida (panel B; also number 8 on panel A), 0.41 µm in Surrella
gemma (panel C; also number 5 on panel A), and 0.62 µm in Pleurasigma angulatum (panel
D; also number 6 on panel A). Bar: panel A, 10 µm; panels B, C, and D, 2.5 µm. From Salmon
and Tran (1998), reprinted with permission from Academic Press.
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3. Adjust the gain and contrast camera controls for optimum image brightness and
contrast.

As you increase contrast, you will need either more camera gain or brighter illumination.
Usually, a better signal-to-noise ratio is achieved by leaving the gain control in the middle
of its adjustment and increasing illumination intensity.

If the projection magnification to the detector is too small, the frustrule pore lattice will be
invisible in the video image, although it will be clearly visible when viewing the image by
eye.

4. Increase the magnification to the camera as much as possible.

As magnification increases, resolution in the image becomes less limited by the resolution
of the camera. However, the size of the field of view decreases inversely with magnification.
In addition, the intensity of light in the image decreases as 1/magnification2. The image
will become noisy at low light intensities. It will be necessary to increase illumination
intensity as much as possible at high magnification or increase the integration period for
the camera exposure.

SUPPORT
PROTOCOL 2

CALIBRATING IMAGE MAGNIFICATION WITH A STAGE MICROMETER
1. Insert the stage micrometer (see Table 4.1.1) on the microscope stage.

2. With the low-power objective, find the region of the micrometer with 10-µm scale
intervals.

The larger intervals are 100 �m.

3. Use the 100- or 10-µm scales to calibrate distance in images taken with your
objectives.

The magnifications on the objective barrel and projection lenses are only approximations;
accurate measurements of distances in images require a calibration scale.

4. Acquire images of the scale in both the horizontal and vertical directions to check if
the camera has square pixels.

TESTS FOR THE OPTICAL PERFORMANCE OF THE MICROSCOPE

Test slides are used to evaluate the performance of the microscope under different
conditions.

SUPPORT
PROTOCOL 3

Testing Phase-Contrast and DIC Using Diatom Testing Slide

Diatoms have silica shells shaped like pillboxes. There are pores in the shell arranged in
a lattice pattern specific for each diatom species. Figure 4.1.8 shows a low-magnification
view of the eight diatoms on the test slide (panel A) plus higher-magnification views of
the lattices of three diatoms most useful in testing the resolution performance of micro-
scope optics using phase-contrast or DIC. Number 6 in panel A of Figure 4.1.8,
Pleurosigma angulatum, has a triangular pore lattice with spacing of ∼0.61 µm between
rows (illustrated in Fig. 4.1.8, panel D). Number 5, Surrella gemma, has rows of pores
where the rows are separated by ∼0.41 µm (illustrated in Fig. 4.1.8, panel C). Number 8
is Amphipleura pellucida, which has horizontal rows of pores separated by ∼0.25 µm
(illustrated in Fig. 4.1.8, panel B). In transmitted light, the diffraction limit to lateral
resolution, r, is given by (Inoué, 1989):

r = λ/(NAobj + NAcond)

where λ is the wavelength of light, NAobj is the objective NA, and NAcond is the condenser
NA (see Fig. 4.1.3). The lateral resolution, r, is equal to 0.195 µm for the highest objective
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NA, which is equal to 1.4, with NAcond = NAobj and 546 nm green light. As seen in Figure
4.1.8B, this objective is capable of resolving the rows of pores in the shell of Amphipleura,
but not the individual pores, which are slightly <0.19 µm apart.

Use the above equation to calculate the diffraction limit of resolution for your other
objectives and use the diatoms to test whether they achieve their theoretical limits.

SUPPORT
PROTOCOL 4

Testing Phase-Contrast and DIC Using Squamous Cheek Cell Test Slide

Cheek cells are a convenient specimen for testing the performance of phase-contrast or
DIC microscopes. As seen in the low-magnification view (Fig. 4.1.6A) they are large and
flat, ≤3 µm thick except near the cell center which contains the nucleus. The upper and
lower surfaces have fine ridges which swirl around much like fingerprints. Many of the
ridges are <0.2 µm in width and separated by <0.5 to 1.0 µm.

To prepare the cheek cells, gently scrape the inside of your mouth with the tip of a plastic
pipet or similar soft tool and spread the cells and saliva on the center of a clean no. 1.5
coverslip. Invert the coverslip quickly onto a clean slide and press down to spread the cell
preparation into a thin layer. Seal the edges with a thin layer of nail polish.

SUPPORT
PROTOCOL 5

Testing Fluorescence Using Red, Green, and Blue Fluorescent Tissue Culture Cell
Test Slide

The cells in Figure 4.1.9 are triple labeled: DAPI stained nuclei and chromosomes (blue
fluorescence; Fig. 4.1.9A); Alexa 488-phalloidin labeled actin filaments (green fluores-
cence; Fig 4.1.9B); and X-Rhodamine immunofluorescently labeled microtubules (red
fluorescence; Fig. 4.1.9C). The microtubules and fine actin filamentous arrays are <100
nm in width, but they should appear sharp and in high contrast in the microscope. There
should be no “bleed-through” of fluorescence from one fluorescence channel to another
if the filters are chosen properly (Taylor and Salmon, 1989).

In fluorescence microscopy, the diffraction-limited lateral resolution is given by (Inoué
1989; Inoué and Spring, 1997):

r = 0.61λ/NAobj

and the intensity of the image, Iimage, is given approximately by:

Iimage ≈ IexNAobj
4/Mp

2

where Iex is the excitation light intensity entering the objective and Mp is the projection
magnification from the objective to the eye or camera. The rate of photobleaching, Rp, of
a specimen depends on:

Rp ≈ IexNAobj
2Mobj

2

where Mobj
2 is the magnification of the objective.

Note from these equations that resolution depends inversely on NAobj (r = 0.24 µm for
NAobj = 1.4 and 546 nm green light), image intensity depends on the fourth power of NAobj,
while loss of intensity by photobleaching of the fluorophore increases with the square of
objective NA (a measure of the excitation light collected by the objective) and magnifi-
cation (which concentrates the excitation light on the specimen).

Verify these equations by imaging the fluorescent specimen (the microtubules in the
spread cells are a good choice) for objectives with different magnifications and numerical
apertures. It will quickly be seen why in fluorescence one wants to use the minimum total
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magnification necessary to resolve the structures of interest in the detector, as well as use
the maximum NAobj in order to maximize light intensity for the least amount of excitation
light (and the least amount of photobleaching).

SUPPORT
PROTOCOL 6

CARE AND CLEANING OF MICROSCOPE OPTICS
Keeping the microscope optics clean is important for high-quality imaging. Dust, finger-
prints, excess immersion oil, or mounting medium on or in a microscope causes reduction
in contrast and resolution. DIC is especially sensitive to contamination and scratches on
the lens surfaces. Below are steps for keeping the microscope clean.

1. Always keep microscopes covered when not in use.

2. Make sure that all ports, tubes, and unoccupied positions on the lens turrets are plugged.

Plastic plugs are usually supplied with the microscope.

Figure 4.1.9 Epifluorescent images of fixed tissue
culture cells stained with (A) DAPI, making DNA
fluorescent blue; (B) Alexa 488 bound to phalloidin
to label actin filaments fluorescent green; and (C)
X-rhodamine labeled antibodies against tubulin to
label microtubules fluorescent red. Bar = 20 µm.
Images recorded with a 40×/(NA = 1.4) Plan Fluor
objective, 1.5 magnification, to a cooled CCD
camera and the multi-modem multiwavelength
microscope described by Salmon et al. (1998).
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3. Store objectives in screw-top containers when not on the microscope. Keep accesso-
ries—e.g., condensers and compensators—in plastic bags or boxes. Keep slides and
coverslips covered.

4. Be careful with salt water, corrosive liquids, and all solvents.

5. When cleaning lens surfaces, avoid touching the lens surface with anything (even lens
paper if possible).

IMPORTANT NOTE: Never use Kimwipes or commercial facial tissue, because they may
contain a filler that is part diatomaceous material (glass). One pass of a Kleenex could
ruin an objective.

6. Remove dust by gently brushing with an oil-free (ether-washed) camel’s hair brush
or by using a low-velocity stream of purified air.

7. Remove water-soluble contamination using distilled water with a small amount of
detergent, such as Kodak Photoflow solution.

Much (modern) immersion oil can also be removed by washing with detergent.

8. Remove most immersion oil by passing a high-quality lens tissue over the objective
or condenser front element.

IMPORTANT NOTE: Do not rub. No area on the tissue should come in contact with the
lens twice. This prevents dust and dirt removed from the lens from coming back and possibly
scratching it. This is easily accomplished by passing the tissue over the lens in a “Z” pattern
or by making parallel passes.

9. Clean objective lenses by holding a piece of doubled lens paper over the objective
and placing a few drops of solvent on the paper. Draw the paper across the lens surface
so that the solvent flows rapidly in a circular pattern over the recessed lens surface
(see Inoué and Spring, 1997). Finish the stroke with a dry portion of the paper. Repeat
as necessary.

In this way, the solvent contacts the lens but the paper does not, because the lens is recessed.
For solvent, first use a 1% solution of Kodak Photoflow in distilled water to remove much
of the oil and water-soluble material. Then use a small amount of oil solvent like ethyl ether
or xylene to clean all the oil from the surface. Avoid soaking a lens with solvent, to prevent
damage to lens cements.

10. To clean recessed front elements of dry objective lenses or to remove stubborn dirt,
use a cotton-tipped applicator that has been soaked in cleaning solution and then
shaken to remove excess fluid. Rotate the cotton tip over the lens surface to clean.
Again, first use a 1% solution of Kodak Photoflow in distilled water to remove much
of the oil and water-soluble material. Then use a small amount of oil solvent like ethyl
ether or xylene to clean all the oil from the surface.

11. Use a detergent solution or ethanol to clean the surfaces of the eyepiece lenses.

Do not use xylene as it may solubilize enamel surfaces.

COMMENTARY

The development of lasers, electronic cam-
eras, digital image analysis, and specific fluo-
rescent molecular probes have recently made
light microscopy an enormously powerful tool
in the biomedical sciences. There are a number
of excellent books and review articles about
these applications, as well as the optical prin-
ciples of light microscope design and image

formation. Listing of all these references is
beyond the scope of this unit; only a few of
these books and reviews are listed, and these
can be used to find other useful references.

Spencer (1982), Zernike (1958), and Keller
(1995, 1997, 1998) provide excellent introduc-
tions to the principles of image formation and
contrast in the light microscope for beginners,
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while Pluta (1988, 1989) provides a more com-
prehensive treatment. Inoué and Oldenbourg
(1995) also review the basic concepts and prin-
ciples of microscope design and different meth-
ods of image formation. The abovementioned
references describe the many modes of trans-
mitted-light imaging in the microscope, includ-
ing bright-field, phase-contrast, and DIC,
which are described in this unit, as well as
dark-field, polarization, interference contrast,
Hoffman modulation, and reflection interfer-
ence contrast methods. Taylor and Salmon
(1989) and UNIT 4.2 give clear introductions to
fluorescence microscopy. The recent edition of
Video Microscopy by Inoué and Spring (1997)
is a comprehensive introduction to the princi-
ples and practical aspects of light microscopy,
video, and digital imaging. The Video Micros-
copy volume of Methods in Cell Biology edited
by Sluder and Wolf (1998) also has contribu-
tions that cover many basic concepts and prac-
tical aspects of light microscopy in the
biomedical sciences; it also includes chapters
on multiwavelength, multimode digital imag-
ing methods, camera selection, ion ratio imag-
ing, and specimen chambers. Salmon and Tran
(1998) review the principles of video-enhanced
DIC methods used to image macromolecular
complexes invisible in the microscope when
viewed by eye. Taylor et al. (1992), Salmon et
al. (1998), and Rizzuto et al. (1998) review
microscope design for multiwavelength, mul-
timode digital imaging of fluorescent speci-
mens, and four-dimensional microscopy. Ad-
vanced quantitative fluorescence methods like
ratio imaging, photobleaching, photoactiva-
tion, resonance energy transfer, chromophore-
assisted laser ablation, and fluorescence life-
time imaging are also reviewed in the Methods
in Cell Biology volumes edited by Taylor and
Wang (1989), and Sluder and Wolf (1998) as
well as in Herman and Jacobson (1990) and
Inoué and Spring (1997). Reviews on imaging
cells containing expressed protein coupled to
green fluorescent protein (GFP) include Heim
and Tsien (1996), and Sullivan and Kay (1998).
Agard et al. (1989), Carrington et al. (1995),
and Rizzuto et al. (1998) review how deconvo-
lution of three-dimensional image stacks can
produce super resolution in the light micro-
scope. The recent edition of Handbook of Bio-
logical Confocal Microscopy edited by Pawley
(1995) is an excellent reference on this impor-
tant method for imaging fluorescent structures
in thick specimens (Smith, 1997). The new
technique of multiphoton laser scanning mi-
croscopy is described by Denk et al. (1994),

while biological applications of optical traps to
manipulate organelles and measure molecular
forces is reviewed by Svoboda and Block
(1994).
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