
It is the promise of optical imaging in the 21st century 
to uncover the spatial organization of all molecules 
inside a cell and directly observe their interactions at the 
highest spatial and temporal levels of detail. As optics 
and chemistry join forces in fluorescence ‘nanoscopy’, 
the resolution revolution honoured by the 2014 Nobel 
Prize in Chemistry represents a paradigm shift in how 
we view the resolution problem in microscopy. Up to the 
end of the 20th century, microscopes discerned features 
through focusing. The focusing strength of the optical 
system (notably, the main lens, that is, the objective) 
alone dictated the resolution for well-corrected optics. 
In 1873, Abbe’s seminal theoretical analysis1 of diffrac-
tive effects laid the ground for an enduring belief within 
the scientific community, namely, that optical micros-
copy resolution was to remain limited (Supplementary 
information S1 (box)). This limitation is caused by 
the optical spot size in the lateral dimensions (in x–y), 
which cannot become any smaller upon focusing than 
the wavelength of light being used divided by twice the 
numerical  aperture, yielding resolutions of ≥200 nm for 
visible light. The extent of the focal spot is even larger 
(≥500 nm, and often more) in the axial direction (in z).

Despite these apparent limits to the resolving power, 
the relatively benign, minimally invasive effects of light 
on living matter have made optical microscopy analysis a 
powerful tool for studies of structure and function at the 
subcellular level. However, an optical microscope with 
much higher resolution seemed unrealistic. Solutions 
eventually came from an unexpected reformulation 
of the resolution problem and by challenging its most 
basic assumptions2–5. The result has been fluorescence 

nanoscopy6, which routinely obtains resolutions in the 
20–50 nm range. This has enabled not only the cell sur-
face but also the entirety of the cell interior to be exam-
ined at a level of nanoscale detail previously unattainable 
with light (FIGS 1,2).

In this Review, we describe selected applications 
of fluorescence nanoscopy, often also referred to as 
super-resolution microscopy, that have broken new 
ground in cell-biological research. We limit ourselves 
to the diffraction-unlimited concepts that have not just 
improved the resolution by a factor of two7, but have 
 broken the resolution barrier altogether. These methods 
are being developed to reach down to the molecular scale 
(FIG. 3). As several aspects of nanoscopic imaging deserve 
specialized comprehensive reviews in their own right, 
we focus on a few illustrative examples of recent discov-
eries. We summarize molecular labelling consider ations 
and constraints, approaches being used at the frontier of 
quantitative super-resolution imaging as well as advances 
in live-cell, tissue and in vivo nanoscopy.

Breaking the diffraction barrier
Resolution in microscopy means the separation of dis-
tinct features. Typically, the goal is to separate molecules 
such as fluorophore-tagged proteins or nucleic acids 
found inside the cell. Irrespective of the microscope sys-
tem, be it a widefield (epifluorescence) configuration or 
within the small focused laser spot of confocal laser scan-
ning, all fluorophores illuminated by excitation light are 
excited quasi-simultaneously. The fluorescence emission 
of each fluorophore travels through the optical system at 
essentially the same time and is again subject to focusing 

1Max Planck Institute for 
Biophysical Chemistry, 
Department of 
NanoBiophotonics, 
Am Fassberg 11, 
37077 Göttingen, Germany.
2Max Planck Institute for 
Medical Research, 
Department of Optical 
Nanoscopy, Jahnstrasse 29, 
69120 Heidelberg, Germany.
3German Cancer Research 
Center (DKFZ), BioQuant, 
Im Neuenheimer Feld 267, 
69120 Heidelberg, Germany.
4University of Göttingen 
Medical Faculty, Department 
of Neurology, Robert-Koch-
Strasse 40, 37075 Göttingen, 
Germany.
steffen.sahl@mpibpc.mpg.de
stefan.hell@mpibpc.mpg.de
sjakobs@gwdg.de

doi:10.1038/nrm.2017.71
Published online 6 Sep 2017

Fluorescence nanoscopy in cell biology
Steffen J. Sahl1, Stefan W. Hell1–3 and Stefan Jakobs1,4

Abstract | Fluorescence nanoscopy uniquely combines minimally invasive optical access to 
the internal nanoscale structure and dynamics of cells and tissues with molecular detection 
specificity. While the basic physical principles of ‘super-resolution’ imaging were discovered in 
the 1990s, with initial experimental demonstrations following in 2000, the broad application of 
super-resolution imaging to address cell-biological questions has only more recently emerged. 
Nanoscopy approaches have begun to facilitate discoveries in cell biology and to add new 
knowledge. One current direction for method improvement is the ambition to quantitatively 
account for each molecule under investigation and assess true molecular colocalization patterns 
via multi-colour analyses. In pursuing this goal, the labelling of individual molecules to enable 
their visualization has emerged as a central challenge. Extending nanoscale imaging into (sliced) 
tissue and whole-animal contexts is a further goal. In this Review we describe the successes to 
date and discuss current obstacles and possibilities for further development.
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Figure 1 | Dissecting animal cells with fluorescence nanoscopy. 
a | Chromatin domains in Drosophila melanogaster nuclei. b | Nuclear pores. 
Left: averaged direct stochastic optical reconstruction microscopy (dSTORM) 
image showing the distribution of two nuclear pore (Nup) proteins in the 
nuclear pore complex (NPC) of Xenopus laevis; right: two possible 
arrangements for the Nup107-160 complexes based on ground state 
depletion with individual molecule return (GSDIM) data from a human NPC 
are traced within the electron density of the cytoplasmic ring of the nuclear 
pore. Scale bars: 100 nm (left), 25 nm (right). c | Cytoplasmic ribosomes in a 
human cell. d | Synaptic vesicles in living rat neurons. e | Human fibroblasts 
immunolabelled for the peroxisomal protein PEX5 (red) and the 
mitochondrial protein Tom20 (green). The arrow shows the colocalization of 
the two proteins. f | Focal adhesions in human cells. The colours indicate the 
vertical (z) coordinate of the labelled actin relative to the substrate. The panel 
on the right is a side view of the area indicated by the rectangle. g | Live 
nanoscopy of Golgi-derived vesicles. h | Nanoscopy of the cytoskeleton in a 
mammalian cell. Left, top: microtubules (in comparison with a confocal 
recording); left, bottom: vimentin (in comparison with a confocal recording); 
right: actin. The scale bar in the right panel is 2 μm. i | Live-cell nanoscopy 
imaging (left) and 4Pi single-molecule switching nanoscopy (right) of the 
endoplasmic reticulum in a mammalian cell. Scale bars: 1 μm. j | Nanoscopy 
images of mitochondria in human cells. Left: outer membrane protein Tom20 
(in comparison with a confocal recording); right: F1FOATPase in the inner 

membrane. k | Lysosomes in a living mammalian cell. Scale bar: 1 μm. 
l | Centrioles in mammalian cells. Scale bar in the right panel: 250 nm. All scale 
bars are 500 nm unless stated otherwise. Part a is adapted with permission 
from REFS 208,209, Macmillan Publishers Limited. Part b (left) is adapted with 
permission from REF 80, Macmillan Publishers Limited, and (right) from REF 81. 
Reprinted with permission from AAAS. Part c is republished with permission 
of Rockefeller University Press, from REF. 210 (Three distinct ribosome 
assemblies modulated by translation are the building blocks of polysomes, 
Viero, G. et al., 208, 5, 2015); permission conveyed through Copyright 
Clearance Center, Inc. Part d is from REF 29. Reprinted with permission from 
AAAS. Part e is adapted from REF. 211, CC-BY 4.0. Part f is adapted with 
permission from REF. 212, Macmillan Publishers Limited. Part g is from REF. 213 
(Erdmann, R. S. et al. Superresolution imaging of the Golgi in live cells with a 
bioorthogonal ceramide probe. Angew. Chem. Int. Ed. Engl. 2014. 53, 
10242–10246). Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced 
with permission. Part h is adapted with permission from REFS 63,214, 
Macmillan Publishers Limited, and unpublished observations (S.J.). Parts i (left) 
and k are adapted with permission from REF. 136, National Academy of 
Sciences. Part i (right) is adapted from REF. 51, CC-BY 3.0. Part j is reprinted 
(adapted) with permission from REF. 46 (Schmidt, R. et al. Mitochondrial 
cristae revealed with focused light. Nano Lett. 9, 2508–2510 (2009)). Copyright 
(2009) American Chemical Society. Part l (left) is adapted from REF. 215, 
CC-BY 3.0, and (right) from REF. 216, The American Society for Cell Biology. 
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Numerical aperture
(NA). Measure of the opening 
angle under which light is 
collected by an objective lens. 
The NA (n· sinα, with n being 
the refractive index and α the 
semi-aperture angle) 
determines the tightest 
focusing possible and thus 
establishes the resolution of 
diffraction-limited microscopy.

Fluorophore states
States with defined properties. 
In the context of nanoscopy, 
useful pairs of states are pairs 
for which one of them gives a 
signal (‘on’), whereas the other 
one does not (‘off’), as this 
allows fluorophores to be 
distinguished even when they 
are located in closer proximity 
to each other than the 
diffraction limit.

Stimulated emission 
depletion
(STED). The stimulated 
emission process transfers 
the excited fluorophore to its 
ground state. The stimulating 
photon induces the generation 
of a stimulated identical 
photon, which is not detected. 
The STED light thus exits the 
specimen, providing a clean 
fluorophore off-switch. 
The near-infrared light used 
in STED is hardly absorbed 
by the cell.

Reversible saturable/
switchable optical linear 
(fluorescence) transitions
(RESOLFT). The general 
conceptual framework for 
coordinate- targeted 
nanoscopy. The term is  
mostly used in reference to 
approaches using reversibly 
switchable fluorescent proteins 
(RSFPs, see below) or 
photochromic organic 
compounds.

Photo-activated localization 
microscopy/stochastic 
optical reconstruction 
microscopy
(PALM/STORM). Coordinate-
stochastic nanoscopy concepts 
based on the switching and 
localization of single molecules. 
Conceptually similar 
techniques include fluorescent 
PALM (fPALM) and ground 
state depletion with individual 
molecule return (GSDIM).

and diffraction as an image is formed on a camera (in the 
case of a widefield microscope) or signals are registered 
by a point detector (in beam-scanning systems). All 
fluorophores residing in closer proximity to each other 
than the diffraction limit are thus inseparable; they are 
excited together, they emit together, and their emissions 
diffract together and are detected together. This limi-
tation seemed impossible to surpass. The key to nano-
scopy5,6 is to render the molecules themselves discernible 
for a short period of time, preventing different molecules 
within the same diffraction region from being detected 
together. Molecular transitions (switching) between two 
fluorophore states, typically a fluorescent ‘on’ state and a 
dark, non-fluorescent ‘off ’ state2–4, allow the limiting role 
of diffraction to be neutralized. Most nanoscopy variants 
switch off the fluorescence ability of the majority of the 
fluorophores within a diffraction region and record few 
or even single on-state molecules at a time (FIG. 3a–c). 
Then, other fluorophores are transitioned from the off to 
the on state, and their signals are read out, a process that 
is repeated until a full description of the spatial arrange-
ment of molecules is obtained. The on-off separation 
(FIG. 3d) can be  implemented in two ways.

In methods such as stimulated emission depletion 
(STED)2,8–11 and reversible saturable/switchable optical 
 linear (fluorescence) transitions (RESOLFT)12–14 micro-
scopy (FIG. 3a), light is applied to induce transitions 
between two states and to switch fluorophores on and 
off at defined spatial coordinates (coordinate-targeted 
nanoscopy). In this approach, the light features intensity 
minima (one, several or many), ideally with zero inten-
sity. At these minima (zeros), there is no off-switching, 
and the fluorophores in the on state can fluoresce. The 
reverse scenario, namely, on-switching everywhere but 
at the minima, can also be implemented. For STED and 
RESOLFT point-scanning implementations in 2D, the 
minimum is at the centre of a doughnut-shaped light 
focus (FIG. 3a).

The methods (fluorescence) photo-activated  localization 
microscopy/stochastic optical reconstruction microscopy 
((f)PALM/STORM)15–18 (FIG. 3b) stochastically estab-
lish the on state at the single-molecule level, so that 
only a  single fluorophore within a distance larger than 
the diffraction limit is able to emit. Each fluorophore 
can then be separately localized (coordinate- stochastic 
nano scopy). Currently, most applications of the PALM/ 
 STORM concept rely on fluorophore blinking in the pres-
ence of excitation light, as in the method termed ground 
state depletion with individual molecule return19–21, also 
called direct STORM (dSTORM)22. While essentially 
all fluorophores blink, only fluorophores with suitable 
switching (that is, blinking) kinetics give good PALM/
STORM images23. Another powerful variant of the 
stochas tic state-switching concept is points  accumulation 
for imaging in nanoscale topography (PAINT)24. In PAINT, 
single fluorophores, which reversibly attach to the  target 
structure, are turned ‘on’ and detected, whereas all 
other unbound, mobile fluorophores remain ‘off ’ and 
 undetected. In these coordinate-stochastic methods, mol-
ecule positions are inferred from the photons registered 
from  single fluorophores. Switching the fluorescence 

ability at the single-molecule level25 is a powerful and 
efficient way to bring about the on-off state difference, 
but the precision of localization does not scale favourably 
with the  number of photons (N) collected (~1/√N). Large 
numbers of photons are needed to determine the position 
of each fluorophore with very high precision. In most 
cases, however, the total budget of photons from a single 
fluorophore is rather limited owing to photobleaching.

The concept referred to as nanoscopy with  minimal 
 photon fluxes (MINFLUX)26 (FIG.  3c) addresses this 
limita tion imposed by photon budget and achieves the 
highest levels of localization precision of all nanoscopy 
approaches, with much fewer photons. MINFLUX 
nanoscopy achieved a 1 nm resolution in examination of 
DNA origami structures by combining the strengths 
of coordinate- targeted and -stochastic approaches. This 
approach utilizes the stochastic on-off switching of 
individ ual molecules to infer their positions by placing 
an excitation-light intensity minimum at targeted posi-
tions to measure signals26. Concepts such as multiple off-
state transitions for nanoscopy27 and MINFIELD28 can help 
push resolution, signal, image contrast and/or tem poral 
 sampling while reducing the light dose to a sample. 
We predict that further variants of MINFLUX will be 
developed to examine fast local dynamics29, including 
highly parallel ized versions of the concept (with many 
minima target ing many coordinates simultaneously) 
for larger fields of view.

We note that several useful diffraction-limited devel-
opments in microscopy that are not discussed in this 
review have improved the contrast, the optical  sectioning 
and, to some extent, the resolution compared with con-
ventional fluorescence microscopy. Among these are the 
seminal realization of confocal detection30,  deconvolution 
approaches and the implementation of structured  
illumin ation microscopy (SIM)7, as well as approaches such 
as AiryScan31,32 or lattice light-sheet microscopy33. SIM has 
clear merits as a tool for live-cell imaging34–37, although 
this technique is diffraction-limited and has only an 
approximate 2-fold increase in resolution compared with 
epifluorescence. Following earlier ideas of RESOLFT 
microscopy4,12–14, a technique combining SIM with 
reversible photoswitching, termed patterned-activation 
nonlinear SIM (PA NL-SIM),38 essentially reduced the 
switching contrast to the bearable minimum by incom-
plete on- and off-switching, allowing faster imaging. 
As a consequence of the requirement to mathemati-
cally reconstruct an image in frequency space from raw 
data, artefacts have remained a problem in NL-SIM39.  
Super-resolution optical fluctuation imaging40,41 achieves 
resolution enhancement by analysing fluorescence fluc-
tuations over time and extracting additional spatial infor-
mation. However, the resolution levels that can be reliably 
achieved using this method are variable, and there is a 
need for further work to quantify the attainable res-
olution gain in cellular imaging, which is typically 2- to 
3-fold over the classical diffraction limit. An intriguing 
approach also not discussed here is the physical expan-
sion of fixed specimens42 using swellable polymer net-
works, which allows the visualization of finer details with 
fluorescence microscopy at conventional resolution.
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Points accumulation for 
imaging in nanoscale 
topography
(PAINT). A coordinate-
stochastic nanoscopy concept 
based on separating 
fluorophores by registering 
only the bound ones (‘on’), 
with the diffusing fluorophores 
remaining undetected (‘off’).

Nanoscopy with minimal 
photon fluxes
(MINFLUX). A concept that 
allows precise localization of 
fluorophores with minimal 
fluxes of emitted photons. 
MINFLUX nanoscopy combines 
coordinate-targeted and  
coordinate-stochastic aspects.

Multiple off-state transitions 
for nanoscopy
(MOST). A concept that 
synergistically combines  
two or more state-transfer 
mechanisms to, for example, 
protect the fluorophore  
from pathways related to 
photobleaching and improve 
signal-to-background in  
coordinate-targeted 
nanoscopy.

Performance of nanoscopy
Many of the earliest experimental nanoscopy reports 
relied on thin, flat and often chemically fixed cells8,15,18, in 
which a 2D resolution gain was sufficient to  demonstrate 
the advantage of improved resolution.

A critical development has been the extension of 
both coordinate-targeted and coordinate-stochas-
tic nano scopy to the third spatial dimension. In the 
case of STED and RESOLFT, similar optical strategies 
that switch off fluorophores laterally to the centre of a 
doughnut-shaped light focus can be used to addition-
ally disallow fluorescence along the z direction above 
and below the focal plane43. The use of two opposing 
objective lenses of high numerical aperture in a so-called 
4Pi arrangement44 prov ides the highest axial resolutions, 
which can become equal to (or even better than) the lat-
eral resolution. The result is an isotropic nanoscale reso-
lution, albeit at the cost of higher optical sophistication 
and more elaborate sample preparation. The 4Pi strat-
egy has been applied in isotropic STED (isoSTED)45–47, 
isoRESOLFT48 and widefield PALM/STORM-type 
nanoscopy49–51 to achieve the ultimate levels of 3D 
resolution. The widefield readout in coordinate- 
stochastic nanoscopy has allowed the development of 
other approaches that prov ide the 3D positions of each 
registered single molecule. These approaches include 
nanoscopy with astigmatism52 and bi-plane imaging53, 

as well as methods such as double-helix imaging54–57 
or Airy-beam detection58 that allow larger (>1 μm) axial 
ranges. Despite these develop ments, the physical limits 
of encoding information in  single-molecule images have 
not yet been reached59–61.

Comparing the resolution performance of different 
nanoscopy methods (FIG. 3e), we note that both coordinate- 
 targeted and coordinate-stochastic approaches, and 
in particular MINFLUX, can conceptually reach a 
molecular- scale (<5 nm) resolution. Some experiments 
have already shown an ~10 nm reso lution in cellular 
nanoscopy50,51,62,63. In most practical cellular applications, 
however, this level of resolution is often not achieved. 
The difference between the theor etically achievable and 
practical resolution can largely be attributed to the use 
of non-optimal fluorophores and labelling. Molecular 
brightness, photostability and photoswitching proper-
ties (for example, kinetics and switching fatigue) are key 
parameters contributing to resolution performance and 
the attainable contrast. Fluorophores for coordinate- 
targeted concepts have to undergo more on-off switching 
cycles than those for coordinate-stochastic approaches, 
which require more fluorophore emission cycles. Much 
of the progress in nanoscopy will eventually depend on 
the identification of improved switchable fluorophores 
and concepts that can help overcome limitations related 
to signal yield and other performance aspects27,28,62,64.
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Figure 2 | Examples of fluorescence nanoscopy in bacteria and yeast. A | Bacterial cells. Aa | Nucleoids in living 
Escherichia coli cells. Ab | Left panel: fixed E. coli cell expressing FtsZ, which is required for cell division. Right panel: 
partitioning apparatus of Caulobacter crescentus. Ac | 3D super-resolution images of the outer surfaces of C. crescentus 
cells. Scale bar: 1 μm. Ad | Outer membrane proteins in E. coli. B | Yeast cells. Ba | Contractile actin rings in fission yeast. 
Bb | Budding yeast cell stained for Rad51, which is required to repair DNA double-strand breaks (DSBs). 
Bc | Dual-colour image of mitochondria in a budding yeast cell showing nucleoid (red)–protein (green) complexes. 
Bd | Septin arrangement in the fungus Ashbya gossypii resolved with nanoscopy. All scale bars are 500 nm unless stated 
otherwise. Part Aa is from REF. 217. Reprinted with permission from AAAS. Part Ab (right) is adapted with permission 
from REF. 218, Macmillan Publishers Limited, and (left) from REF. 219, CC-BY 3.0. Part Ac is adapted with permission 
from REF. 220, American Chemical Society. Part Ad is adapted from REF. 221, CC-BY 3.0. Part Ba is adapted with 
permission from REF. 222, National Academy of Sciences. Part Bb is adapted from REF. 223, CC-BY 3.0. Part Bc is 
adapted from REF. 128, CC-BY 3.0. Part Bd is reprinted (adapted) with permission from REF. 224. Copyright (2015) 
American Chemical Society.
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MINFIELD
A method for increasing the 
signal (photobleaching 
reduction) in coordinate-
targeted nanoscopy. Using 
scan fields below the diffraction 
limit around an intensity 
minimum (for example, at the 
centre of a doughnut shape) 
avoids subjecting the 
fluorophores to the excess 
intensities of switching light 
at the maxima of the 
off-switching pattern.

Optical sectioning
Used to obtain an image with 
sufficient contrast that is not 
compromised by fluorescence 
originating in other axial planes 
of the specimen. For example, 
a confocal pinhole can act to 
reject the out-of-plane 
background. Other sectioning 
strategies include selective 
excitation or photoactivation 
by multi-photon absorption 
or light sheets.

Deconvolution
An algorithm to reverse the 
effects of convolution in the 
image formation process. 
By removing the optical blur, 
a sharper image is computed 
based on the (ideally) exact 
knowledge of the blurring 
(formalized by the so-called 
point spread function (PSF)). 
Because knowledge of this 
PSF is in practice imperfect, 
and registered images are 
compromised by noise, 
artefacts can easily arise in  
the deconvolution process. 
Deconvolution is not equivalent 
to methods that actually 
improve the spatial resolution 
by a (on-off) state transition.

Structured illumination 
microscopy
(SIM). A diffraction-limited 
method that produces up to 
2-fold improved resolution and 
requires the acquisition of 
several images of a specimen 
with shifted illumination 
patterns and computation of a 
reconstructed image. Further 
improvements in resolution can 
be realized if on-off transitions 
(as in reversible saturable/
switchable optical linear 
(fluorescence) transitions) 
are incorporated.

Considerable practical differences exist among the 
available nanoscopy techniques in terms of axial section-
ing ability, attainable imaging depth and acquisition 
speed. In general, single-molecule stochastic methods 
fare less well in scenarios with high background  signals, 
and it generally takes significantly longer to read out 
molecules one by one owing to the need for largely 
non-overlapping diffraction spots of isolated molecules 
on the camera65,66. Coordinate-targeted scanning meth-
ods can quickly survey signals at pre-set coordinates and 
have achieved very fast imaging within small regions 
of interest, allowing recordings at video-rate speed29 
and even down to the millisecond scale67. Most beam- 
scanning STED and RESOLFT implementations harness 
confocal pinholes. In many scenarios, confocality is a 
major advantage owing to the inherent optical sectioning 
and background suppression.

Nanoscopy as a tool for discovery
Overcoming the initial hurdles of limited access to 
pioneering instruments in only a small number of 
laboratories, adoption of fluorescence nanoscopy has 
picked up quickly, not least because of commercializa-
tion, a trend that is still accelerating. Nanoscopy has 
been successfully used to probe the internal structures 
of both eukaryotic and prokaryotic cells (FIGS 1,2), and 
the number of studies investigating new biological ques-
tions and surveying previously unattainable scales has 
rapidly increased.

Different areas of cell biology have adopted nano-
scopy at different speeds. Whereas virology and micro-
biology were quick to use these approaches, in plant 
biology, a field with very strong roots in microscopy, only 
a few nanoscopy studies have been reported68. Initially, 
most nanoscopy studies utilized mammalian cells grown 
on cover glass. However, as new techniques developed 
and instrument availability expanded, nano scopy has 
been increasingly used to investigate nanoscale struc-
tures in cells grown in more complex environments such 
as 3D cell cultures and biofilms as well as in tissues and 
even living animals. Nanoscopy has been used to address 
questions in fields such as immunology69, signalling70, 
virology71–75, bacteriology76 and cancer bio logy77. The 
first reports of using nanoscopy on tissues from human 
patients have also appeared78,79, pointing to exciting 
future possibilities in medical diagnostics.

Nanoscopy has also been applied to study the detailed 
architecture of molecular machines and complexes 
within cells. Notably, images of labelled nuclear pore 
complexes (NPCs) have been analysed by single-particle 
averaging, a method well established in electron tomo-
graphy, to map specific proteins within these struc-
tures80,81. On the basis of images of thousands of NPCs, 
it has been possible to determine the average positions 
of individual proteins of the Nup107-160 subcomplex 
with a precision of well below 1 nm, shedding light on 
the molecular architecture of this pore81. This approach 
has even been transferred to reconstruct 3D datasets82, 
and similar strategies have also been used to investigate 
symmetric structures such as primary cilia83 or herpes 
simplex viruses84.

Examples of nanoscopy in cell biology
Nanoscopy has come of age, and its benefits typically 
manifest in combination with other experimental 
approaches. As of early 2017, the keywords ‘nano scopy’ 
and ‘super-resolution microscopy’ together result in 
more than 16,000 hits in a Web of Science database 
search. Hence, given the wealth of studies using nano-
scopy, it would be an all but impossible undertaking to 
try to appropriately cover all these applications. We refer 
to expert reviews on various subfields but will briefly 
discuss some important findings in two fields that have 
been at the focus of nanoscopy since its beginnings, 
namely, neurobiology and mitochondrial biology.

Nanoscopy of neurons. In the early days of nanoscopy, 
the fluorescently labelled cytoskeleton was primarily 
used as a convenient cellular structure to determine the 
resolving power of an instrument. It came as a surprise 
when it was shown, first in neuronal axons85 and later 
also in dendrites86,87 and spine necks88,89, that short actin 
filaments capped by adducin are bridged by spectrin 
tetramers to form a ~190-nm periodic ring-like struc-
ture underneath the plasma membrane85,90,91 (FIG. 4a). 
This periodic lattice has been visualized in both chem-
ically fixed and living cells in virtually every neuron type 
as well as in glial cells92–94, suggesting that it is a more 
general feature of the cytoskeleton in cells of the nervous 
system. The periodic scaffold forms a diffusion barrier95 
and regulates the positioning of other proteins that all 
exhibit the same periodicity, such as ankyrins, sodium 
and potassium channels, and adhesion molecules85,86,90,96. 
This periodicity is even coordinated between axon and 
glial cells at the nodes of Ranvier96 (FIG. 4b). Remarkably, 
the periodic actin structure has eluded visualization by 
electron microscopy. Hence, this repetitive organization 
of the cytoskeleton in neurons found by STORM and 
STED is a bona fide example of a subcellular structure 
discovered by fluorescence nanoscopy.

As learning and memory are encoded in large part 
by the presynapses and postsynapses established by 
transmitting and receiving neurons, an understanding 
of brain function requires detailed insights into the 
architecture of these structures. In an attempt to obtain 
a global view of the structure of the presynapse, synaptic 
boutons containing the entire synaptic machinery were 
purified from rat brains and analysed by quantitative 
western blotting, mass spectrometry, electron micro-
scopy and nanoscopy97. This led to the generation of an 
‘average’ synapse model composed of the merged data-
sets. Although many details are missing from this model 
or need further verification, it provides some insight into 
the enormous nanoscale complexity of structures such 
as the synapse.

Most nanoscopy studies on synapses have concen-
trated on the presynaptic active zones (release sites) and 
the dendritic spines, which contain the postsynaptic 
machinery98,99. The protein-rich active zones are often 
smaller than the diffraction limit. A clearer picture of 
how molecular scaffolds and machineries are organized 
in sub-synaptic nanodomains is emerging, although 
the data are far from providing a complete image of 
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AiryScan
A diffraction-limited method 
that combines conventional 
confocal laser scanning 
microscopy with fast widefield 
detection or other detector 
designs to achieve close to a 
doubling of resolution after 
mathematical processing. 
Also known as image scanning 
microscopy (ISM). 

Lattice light-sheet 
microscopy
A diffraction-limited method 
that uses a structured light 
sheet to excite fluorescence in 
successive planes of a 
specimen, generating a time 
series of 3D images that can 
provide information about 
dynamic biological processes.

all proteins10,100–111. Nanoscopy has contributed to the 
identifi cation of long-range organization across the syn-
aptic cleft and has revealed molecular components 
that are co-aligned in the pre- and postsynapse. These 
so-called nanocolumn arrangements may  facilitate 
 effective  synaptic communication112 (FIG. 4c).

Dendritic spines are specialized micron-sized 
membrane protrusions harbouring the postsynaptic 
machinery. These spines contain a highly branched 
actin cytoskeleton network, which influences their 
shape. Live-cell nanoscopy imaging has revealed the 
high level of heterogeneity and pronounced dynamics 
of this network113–115. Remarkably, STED nanoscopy in 
combination with fluorescence recovery after photo-
bleaching (FRAP) experiments and electrophysiology 
allowed the simultaneous measurement of spine-neck 
geometry and the movements of molecules in and out 
of the spines with high temporal resolution116–118 (FIG. 4d). 
These data showed that the biochemical compartmen-
talization of the spines, which separates them from 
 dendrites, critically depends on spine-neck width118. 

This compartmentalization appears to be a major factor 
in the fine-tuning of synaptic strength, which is crucial 
for the computational power of neurons.

Neurodegenerative disorders, such as Parkinson 
disease, Alzheimer disease and Huntington disease, are 
characterized by aberrant accumulations of proteins or 
pep  tides in the brain, with subsequent neuro nal death and 
the loss of motor and/or cognitive function. A  crucial 
and unresolved question is which of the polymorphic 
aggregation states elicit toxic cellular responses and by 
which mechanisms. Nanoscopy is at the stage of being 
able to directly visualize protein aggregation, such as 
aggregate nucleation events and fibril formation119,120, and 
to carry out such studies in cells121–123 (FIG. 4e). We expect 
that the ability to selectively co- visualize the action of 
cellular protein quality- control and degrad ation systems, 
such as the ubiquitin– proteasome pathway, autophagy- 
mediated degradation and chaperone networks, will add 
new information about which aggregation  species are 
resilient to degrad ation and drive toxic  cascades. As an 
example of the capabili ties of nanoscopy, it has been 
demonstrated that exogen ous addition of a chaperonin 
subunit attenuates the formation of both huntingtin (Htt) 
inclusion bodies and other smaller fibrillar Htt species 
present in the cytosol of neuronal model cells124,125, 
potentially enabling the development of pharma ceutical 
strategies that can interfere with these aggregation 
processes. Nanoscopy has also provided information 
on the interactions of larger Htt aggregates with tran-
scription  factors, suggesting that these aggregates exert 
some of their  cytotoxic effects by interfering with  
gene transcription126.

Nanoscopy of mitochondria. Like the cytoskeleton, 
mitochondria have been at the focus of nanoscopy 
since its beginnings15,45,46,127–131. In particular, antibodies 
against Tom20 and Tom22, both membrane-spanning 
receptor proteins of the translocase of the outer mem-
brane (TOM) complex, which is found in clusters on the 
surfaces of mitochondria, were extremely useful in early 
studies and often applied to demonstrate the resolving 
power of nanoscopy instruments51,127,132–134.

Seminal electron microscopy work on mitochondria 
performed in the early 1950s revealed that these organ-
elles feature a smooth outer membrane and a highly con-
voluted inner membrane that forms folds referred to as 
cristae, which project into the mitochondrial  interior135. 
Cristae have been repeatedly imaged using nano-
scopy45,46,136,137, although they remain a challenging target 
because of their small size and elaborate 3D structure. 
Several studies have shown that not only the architecture 
and orientation of the cristae membranes but also the 
protein distributions within the membranes are adapted 
to the cellular environment138,139. Detailed measurements 
of the movement of proteins within the inner mem-
brane have proved difficult, as diffraction-limited FRAP 
and related approaches inherently average across sub-
domains such as individual cristae, making the analy sis 
of FRAP data from inner membrane proteins challeng-
ing140,141. Using elements of single-molecule tracking and 
coordinate- stochastic nanoscopy, quantitative data on 

Figure 3 | The state of the art in fluorescence nanoscopy: basic working principles 
and comparisons of 3D resolution. a-c| Major classes of diffraction-unlimited 
fluorescence nanoscopy concepts. a | In stimulated emission depletion (STED) and 
reversible saturable/switchable optical linear fluorescence transitions (RESOLFT) 
nanoscopy, a specific light pattern (red, doughnut-shaped) is used to switch the 
fluorescence ability of fluorophores ‘off’, whereas fluorophores remain ‘on’ only at the 
intensity minima (shown by yellow star). This approach can also be parallelized (red, 
periodic pattern). b | In methods such as photo-activated localization microscopy (PALM), 
stochastic optical reconstruction microscopy (STORM), ground state depletion with 
individual molecule return (GSDIM) and points accumulation for imaging in nanoscale 
topography (PAINT), single on-state fluorophores are established at distances larger than 
the diffraction limit (λ/2NA, where λ is the wavelength, and NA is the numerical aperture 
of the objective). c | In MINFLUX (nanoscopy with minimal photon fluxes), single 
fluorophores can be localized at the nanometre scale with minimal photon numbers 
because their position is inferred from the positioning of the intensity minimum of the 
light pattern used for excitation. d | All diffraction-unlimited super-resolution concepts 
utilize fluorophore state transitions to render adjacent molecules within a common 
diffraction zone transiently discernible. Transitions between a bright light-emitting on 
state and a dark off state have proved the most effective and have allowed the diffraction 
barrier to be broken. e | Comparison of routine levels of 3D resolution obtained using 
different microscopy techniques for cellular imaging. The ellipsoids indicate the lateral 
(x, y) and axial (z) resolution levels of the listed methods. Each ellipsoid can be interpreted 
as an uncertainty range from where detected photons originate. Imaging methods with 
limited resolution owing to diffraction are shown in red (assumed emission wavelength: 
~650 nm). The conceptually diffraction-unlimited methods (that is, the nanoscopy 
methods) are shown in green. The methods indicated in yellow have been shown to 
feature extended resolution over the diffraction limit, but their practical applicability  
and/or reliability with respect to resolution need to be further explored. The indicated 
resolutions have been repeatedly demonstrated in cell-imaging applications and do not 
simply represent ultimate or best values provided in the literature. The resolutions shown 
for lattice light-sheet microscopy and patterned-activation nonlinear structured 
illumination microscopy (PA NL-SIM) were taken from REFS 33,38. Confocal RESOLFT 
resolutions are shown for green fluorescent proteins. The resolution of diffraction-
unlimited nanoscopy is limited by the photostabilities and physical sizes (compare 
with FIG. 6) of the marker fluorophores as well as the attachment strategy. The recently 
demonstrated MINFLUX concept (see part c) fundamentally addresses the limited photon 
budget and promises further advances in resolution and recording speed. The dithered 
mode in the ellipsoid corresponding to lattice light-sheet microscopy involves the rapid 
scanning of the light sheet along the x-axis, with only one image being recorded per 
z-plane. iPALM, interferometric photoactivated localization microscopy; isoSTED, 
isotropic STED; NA, numerical aperture; PSF, point spread function; SIM, structured 
illumination microscopy; SOFI, super-resolution optical fluctuation imaging.
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Super-resolution optical 
fluctuation imaging
(SOFI). A method that analyses 
on-off fluctuations of 
fluorescence signals (but not 
strictly at the single-molecule 
level as in photo-activated 
localization microscopy and 
stochastic optical 
reconstruction microscopy) by 
examining correlations in time 
to improve resolution typically 
2- to 3-fold in comparison with 
epifluorescence.

the mobility of proteins within subcompartments of the 
mitochondrial inner membrane were obtained142 (FIG. 5a). 
The data provide experimental evidence for the concept 
that cristae membranes act as diffusion- restricting micro-
compartments and open novel  possibilities for studying 
inner-mitochondrial dynamics.

Although mitochondria are best known for their 
role as the ‘power houses’ of the cell, they are also key 
players in executing apoptosis, a tightly regulated  suicide 
programme in eukaryotic cells143. Upon apoptosis 
 initiation, the pro-apoptotic proteins BCL-2-associated 
X protein (Bax) and BCL-2 antagonist or killer (Bak) 
accumulate in clusters on the mitochondrial outer mem-
brane and thereby open the membrane to facilitate the 
release of cytochrome c into the cytosol144. The released 
cytochrome c then initiates a signalling cascade that 

ultimately results in cell death. While the key roles of 
Bax and Bak in mitochondrial outer membrane perme-
abilization have been known since the late 1990s, the 
structural mechanism of membrane rupture remained 
elusive. In 2016, two independent studies using STED 
and PALM nanoscopy revisited this problem by visual-
izing Bax in apoptotic cells145,146. Both studies reported 
the formation of unexpected Bax assemblies. The STED 
study145, imaging endogenous Bax using immuno-
fluorescence, demonstrated that Bax molecules in the 
mitochondrial outer membrane assemble into rings 
whose interiors are devoid of outer membrane proteins 
(FIG. 5b). This finding strongly suggested that several 
Bax mol ecules form a pore in the outer membrane. 
Remarkably, a subsequent study using cryo-electron 
microscopy of Bax in artificial membranes further 
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4Pi
Optical arrangement for 
coherent excitation and/or 
collection of fluorescence 
emissions featuring two 
juxtaposed lenses of high 
numerical aperture to expand 
the solid angle as much as 
possible, which enables very 
high axial resolution in 
nanoscopy (<10 nm).

Single-particle averaging
Computational methods that 
infer a structure by sorting 
and averaging data from 
a large dataset of images 
showing the same object.

Epitopes
Parts of a protein that are 
detected by an antibody 
or other binding probe.

Bio-orthogonal labelling
Chemical labelling reactions 
that can occur inside living 
cells without interfering with 
endogenous biochemical 
processes.

supported this view by showing similar Bax assemblies147 
(FIG. 5b). As nanoscopy allows for the immediate visual-
ization of these Bax assemblies in cells, more detailed 
studies to dissect the exact function, composition and 
dynamics of these novel structures in the progression of 
cell death will  undoubtedly be performed.

The mitochondrial network of a single human cell 
contains thousands of copies of mitochondrial DNA 
(mtDNA), each encoding only 13 subunits of the mito-
chondrial oxidative phosphorylation system, along with 
several ribosomal RNA and tRNA species. It came as a 
surprise when two independent super-resolution stud-
ies determined the size of mitochondrial nucleoids as 
ranging from 70 to 110 nm, which is much smaller than 
anticipated previously; in addition, the studies revealed 
wide variability in the shape of these structures148,149. 
Estimates of the mtDNA copy number per nucleoid that 
were obtained in the pre-super-resolution era indicated 
values of 2–10 copies of mtDNA per nucleoid150,151. With 
STED nanoscopy, a previously unrecognized clustering 
of nucleoids was discovered, and this approach there-
fore allowed a more accurate estimation of the number 
of nucleoids within a cell148,152 (FIG. 5c). Combining these 
numbers with biochemical data revealed that an average 
of only 1–2 mtDNAs are present within each nucleoid. 
This finding has far-reaching consequences for  modelling 
the segregation and transmission of mtDNA153.

The labelling challenge
In fluorescence imaging, the fluorophore attached to a 
protein of interest is used as a proxy for the localization 
of the protein. However, this assumption may no longer 
be valid in nanoscopy, where the distance between a 
fluorophore and the labelled protein may be larger than 
the resolution realized in the experiment. Additional 
challenges stem from incomplete labelling154, such as 
in cases where not all epitopes are decorated. Other 
undesirable effects of labelling may affect the localiza-
tion and/or function of the host protein. These effects 
may become detectable only when cells are imaged at 
an improved resolution.

In immunocytochemistry, antibodies are frequently 
used in pairs consisting of a primary antibody that is 
recognized by several multiple-dye-labelled second-
ary antibodies. The pairing often provides very good 
molecular specificity and superior signal-to-noise 
ratios due to the inherent signal amplification. This 
advantage over other fluorescent labelling methods 
comes at the cost of the relatively large size of these 
binding probes. For example, when attached to a 
 target protein, a pair of IgG antibodies may span up to 
15 nm, which is within the resolution regime of nano-
scopy (FIG. 6). The use of antigen-binding fragments or 
of small affinity probes such as aptamers, nanobodies 
and others, reduces this problem, and some of these 
probes have been successfully used for nanoscopy155–157. 
Recombinant small binders feature the additional bene-
fit of full experimental reproducibility without the 
batch-to-batch variation observed with polyclonal anti-
bodies158. We predict that antibodies, which represent 
a vast resource, are to be in use for some time to come. 
Over the longer term, however, antibodies are likely to 
be outperformed by small recombinant binders in most 
nanoscopy applications.

In live-cell nanoscopy, various — often switch able 
— fluorescent proteins or proteins that facilitate bio- 
orthogonal labelling with exogenously added fluorophores, 
such as Snap-tag or Halo-tag, are in use159–161. Most of 
these fusion tags are of similar size (~15–30 kDa). The 
host proteins that are functionally taggable are generally 
not directly affected by the size of the tag. The expression 
levels of the fusion proteins, however, may massively 
interfere with their nanoscale distributions162, and the 
first examples of using genome editing to address this 
problem in nanoscopy have been demonstrated163.

Although such protein fusions allow close proxim-
ity of the fluorophore and the target protein (<3 nm), 
the fusion protein inescapably adds an extra domain, 
and the location of the host protein is still not directly 
reported. A solution might be provided by genetic code 
expansion in combination with click chemistry. This 
combination allows site-specific labelling of target 
proteins by attaching a fluorophore directly to a tar-
get protein164,165 and may even allow investigation of the 
dynamics of protein subdomains in living cells using 
nanoscopy. The technical hurdles are still sizeable, but 
ultimately, this or related methods might be the most 
adequate approach to address the labelling problems of 
future nanoscopy.

Figure 4 | Nanoscopy of neurons. Investigations into synapse and axon ultrastructure, 
dendritic spine-neck morphology and aggregation-prone proteins and peptides in 
neurodegenerative disease have all benefited from the enhanced resolution of nanoscopy. 
a | Actin, spectrin and other proteins form a coordinated quasi-1D lattice structure in 
neuronal processes. Top and middle: two-colour stochastic optical reconstruction 
microscopy (STORM) images of axons of fixed cultured rat hippocampal neurons. Top: actin 
in green, spectrin in magenta. Middle: spectrin in green, adducin in magenta. Bottom: 
two-colour stimulated emission depletion (STED) imaging of a dendrite stained for spectrin 
(magenta) and actin (green). Scale bars: 1 μm. b | STED nanoscopy revealed that at paranodes 
(regions flanking the nodal gap), both axonal proteins and glial proteins form periodic 
quasi-1D arrangements with a high degree of interdependence between the positions of 
the axonal and the glial proteins. Top: paranode labelled for axonal Caspr and glial 
neurofascin. Bottom: paranode labelled for the glial proteins ankyrin B and neurofascin. 
These data suggest the existence of mechanisms that align the cytoskeleton of the axon 
with that of the glial Schwann cells. Scale bars: 1 μm. c | Nanoscopy suggests that synaptic 
transmission is organized such that the active zone directs action potential-evoked vesicle 
fusion to occur preferentially at sites directly opposing postsynaptic receptor–scaffold 
ensembles. In this way, neurotransmitter release is aligned to the corresponding receptors 
in the postsynaptic cell along ‘nanocolumns’. Top: image of the presynaptic protein 
Rab3-interacting molecule (RIM) (red) and the postsynaptic scaffolding molecule PSD-95 
(blue). Bottom: scheme displaying the concept of ‘nanocolumns’ bridging the synaptic 
connection between neurons. Scale bar: 200 nm. d | Nanoscopy reveals that dendritic 
spine-neck plasticity regulates compartmentalization of synapses. Examples of fluorescently 
labelled dendritic spines (top) and their structural plasticity during long-term potentiation 
(bottom). Scale bars: 500 nm. e | Direct observations of fibrils of aggregation-prone mutant 
huntingtin exon 1 proteins and amyloid-β peptides in cells. These fibrillar aggregates are 
formed from monomers and potentially higher-order oligomeric conformational species 
(scheme, left), which can be visualized by nanoscopy. Scale bars: 500 nm. Part a (bottom) is 
adapted with permission from REF. 88, Macmillan Publishers Limited, and (top) from REF. 85. 
Reprinted with permission from AAAS. Part b is adapted with permission from REF. 96, 
National Academy of Sciences. Schematic of the neuronal cytoskeleton is adapted with 
permission from REF. 85. Reprinted with permission from AAAS. Part c (top) is adapted 
with permission from REF. 112, Macmillan Publishers Limited. Part d is adapted with 
permission from REF. 118, Macmillan Publishers Limited. Part e (top) is adapted 
with permission from REF. 122, Macmillan Publishers Limited. Part e (bottom) is reprinted 
(adapted) with permission from REF. 121. Copyright (2011) American Chemical Society.
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Genetic code expansion
A process that enables the 
site-specific incorporation of an 
amino acid that is not among 
the 20 common proteinogenic 
amino acids into a protein.

Click chemistry
A term that encompasses 
several chemical reactions that 
facilitate the fast, specific and 
irreversible attachment of a 
probe such as a fluorophore 
to a specific biomolecule.

Getting quantitative
The counting of molecules, which is arguably one of 
the main goals of molecular analysis with nanoscopy, 
is a topic of active research. For quantification pur-
poses, all copies of a molecule of interest need to be 
accounted for, which ties in closely with the challenges 
associated with labelling. Emerging approaches for such 
quantitative nanoscopy have made direct use of the 
single- molecule character of data acquisition in PALM/
STORM-type experiments104,166–170 or in quantitative 
PAINT (qPAINT)171 (BOX 1). Alternatively, information 

on molecule numbers has been mapped in a coordinate- 
targeted manner172 using STED, which has been made 
possible by analysing the statistics of photon emis-
sion events and taking advantage of the fact that any 
fluorophore can emit only one photon at a time (BOX 1). 
Quantitative nanoscopy has allowed the  number of 
internalized transferrin receptors to be counted in 
human cells172 and the number of flagellar motor pro-
teins to be counted in living bacteria166, to name but two 
examples. The efficiency of labelling as well as environ-
mentally dependent variations in the photo physical 
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Figure 5 | Nanoscopy of mitochondria. Examples of nanoscopy findings in mitochondrial biology. a | Movement of the 
protein complexes that mediate oxidative phosphorylation (OXPHOS) in the mitochondrial inner membrane (MIM) is largely 
confined to individual cristae. Left panel: recording of the movement of single complex II subunits by single-molecule 
tracking and localization microscopy. Right panel: schematic showing the confinement of the protein movement within the 
membrane of a single crista. Scale bar: 1 μm. b | The proapoptotic cell-death mediators Bax and Bak were found to form 
ring-like structures in the mitochondrial outer membrane (MOM) that seem to act as pores to mediate the release of 
cytochrome c from the mitochondria of apoptotic cells145,146. Left panel: 3D reconstruction based on stimulated emission 
depletion (STED) data of Bax rings formed on apoptotic mitochondria; top, middle: optical section through an apoptotic 
mitochondrion labelled for Tom20 (red) and Bax (green); bottom, middle: cryo-electron microscopy projection image of a Bax 
pore in a liposome. Right panel: schematic depicting Bax/Bak pores in the mitochondrial outer membrane. Scale bars: 1 μm 
(left), 500 nm (top, middle) and 40 nm (bottom, middle). c | Knowledge of the number of copies of mitochondrial DNA (mtDNA) 
molecules in each nucleoid is key for an accurate description of the mtDNA partitioning upon mitochondrial segregation, 
but previously reported data were inconsistent. A combination of nanoscopy with real-time PCR revealed that most 
mitochondrial nucleoids in mammalian cells contain only 1 or 2 mtDNAs148. Top: nucleoid labelled with an anti-DNA antibody. 
Comparison between a confocal image and a STED image (S.J., unpublished observations). Bottom: schematic with nucleoids 
depicted approximately to scale. Scale bar: 200 nm. IMS, intermembrane space. Part a is adapted with permission of 
The Company of Biologists, from REF. 225 (Restricted diffusion of OXPHOS complexes in dynamic mitochondria delays their 
exchange between cristae and engenders a transitory mosaic distribution. Wilkens, V., Kohl, W. & Busch, K. J. Cell Sci. 126, 
103–116, 2013); permission conveyed through Copyright Clearance Center, Inc. Part b is adapted from REF 145, CC-BY 4.0, 
and with permission from REF 147, Macmillan Publishers Limited, and unpublished observations (S.J.).
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behaviours of fluorophores both contribute to counting 
uncertainty and thus complicate these analyses.

While caution needs to be applied when infer-
ring molecule clustering from localization data in 
coordinate- stochastic methods173, a number of strat-
egies to rigorously analyse clustering at the nanoscale 
have been explored69,174–176 for PALM and STORM. All 
these approaches build on the precision (and accuracy) 
of  spatial assignment of fluorophores in the experiment 
as a key parameter, which must be determined before 
further analysis. Using the obtained single-molecule 
coordin ates, spatial-point statistical methods have 
been used to quantify how much the spatial distrib-
ution deviates from an entirely uniform distribution of 
points, giving information on the spatial hetero geneities 
of protein arrangements69,174. A distinct set of so-called 

pair correlation methods175 that make use of math-
ematical correlation analysis has been used to probe the 
distribution of localizations relative to all other localiza-
tions in their vicinity, thereby providing information 
on the sizes, densities and abundances of membrane 
protein clusters.

While cellular nanoscopy imaging of two col-
ours was introduced in early proof-of-concept stud-
ies18,19,57,127,177, the growing availability of methods for 
multicolour nanoscopy23,161,178 will increasingly allow 
assessment of the relative molecular organizations and 
interactions of two, three or more species. Established 
colocalization assessments probing the interaction of 
two species based on the overlap of their signals in 
conventional microscopes will need to be reassessed 
in the age of nanoscale resolution179, but a consensus 
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Labelling coverage
The fraction of epitopes 
decorated by a binding probe 
such as an antibody out of all 
epitopes potentially available 
for decoration by this 
binding probe.

Fluorescence fluctuation 
spectroscopy
A set of methods, in particular 
fluorescence correlation 
spectroscopy (FCS), which 
allow the determination of 
timescales of dynamic 
processes. By analysing the 
(self-) similarity (so-called 
correlations) of the signal from 
an observed spot over time, 
information on, for example, 
molecular diffusion can 
be obtained.

on ‘best practices’ is still lacking. Algorithms based on 
PALM and STORM data to quantify how two species 
are organized spatially with respect to each other have 
been implemented180,181. As resolution further increases, 
a suitable analysis method will need to be developed 
to account for label size, intramolecular flexibility, 
exact binding locations on a target and overall labelling 
 coverage. In addition, the small numbers of detected 
photons in some imaging experiments with low copy 
numbers of molecules of interest and/or fast acquisi-
tion times will call for more sophisticated  statistical 
approaches to extract information from raw data.

As for the analysis of processes that occur on short 
timescales, the STED concept in conjunction with 
 fluorescence fluctuation spectroscopy methods has bridged 
the gap of high spatial resolution and highest tem poral 
resolution. Use of this combination to map translational 
diffusion in cell membranes provided unique insights 
into how the chemical properties of lipids and  membrane 
proteins affect their nanoscale dynamics as well as their 
local membrane compartmentalization182–187. Another 
powerful approach operating at the single- molecule 
level that is increasingly applied is the tracking of  single 
molecules within time-lapse datasets from PALM 

experiments188. This approach allows the creation of 
spatial maps of molecular movements142,188,189. To prov-
ide context, these maps can be correlated with imaging 
data at diffraction-limited or nanoscale  resolution to 
 interpret local differences in mobility.

Nanoscopy goes live
Obtaining reliable nanoscopic data from living cells 
requires the minimization of disturbances caused by 
phototoxic effects while maximizing the information 
obtained from a finite number of available photons. 
While image acquisition from fixed samples may be 
compatible with recording times of up to hours, live-
cell nanoscopy imposes serious additional challenges. 
High temporal resolution is required to capture cellular 
dynamics in 4D, and phototoxicity as well as photo-
bleaching limit the useful number of frames that can 
be recorded. In tissues, further challenges arise, such as 
elevated autofluorescence and optical aberrations stem-
ming from, for example, large tissue thickness and/or 
variable local sample composition.

Coordinate-targeted schemes, especially STED with 
its basic instant light-driven off-switching mechanism, 
are inherently well suited to the challenge of dynamic 
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Box 1 | Methods of quantitative nanoscopy

Counting approaches can make direct use of the single-molecule 
character of fluorophore detection in nanoscopy experiments with 
photo-activated localization microscopy (PALM), stochastic optical 
reconstruction microscopy (STORM), ground state depletion with 
individual molecule return (GSDIM), and quantitative points 
accumulation for imaging in nanoscale topography (qPAINT). 
In PALM, for example, a kinetic model of fluorophore blinking is built, 
and an iterative algorithm adjusts the acceptable time window 
during which fluorophores can blink to the ‘off’ state, be dark  
and still count as one after their return to the bright ‘on’ state. Thus, 
fluorophores residing within the localization uncertainty (resolution) 
can be counted (see figure part a, left). The total number of molecules 
in a given nanoscale position can also be obtained without analysing 
the details of blinking over the course of a PALM/STORM-type 
experiment by using the knowledge of the number of fluorophore 
localizations obtained under the same conditions from a single 
fluorophore. Then, taking into account the labelling stoichiometry in 
the experiment with S representing the known number (on average) 
of fluorophores per target molecule, the number of molecules can be 
estimated by Nmolecules = Nlocalizations / (S · Nlocalizations for a single fluorophore). Owing 
to the uncertainties in the number of blinks within the finite 
recording time, this approach is especially suitable for obtaining 
approximate numbers across the whole ensemble of molecular 
clusters or structures. The qPAINT method (see figure part a, right) 
relies on well-characterized binding times of fluorophore-carrying 
DNA imager strands to complementary docking strands. This allows 
the single-molecule event rate (localizations per unit of time) to be 
proportional to the number of binding sites present and in effect 
allows molecular counting. Quantification in nanoscopy can also 
involve mapping of fluorophore numbers in a coordinate-targeted 
manner as in stimulated emission depletion (STED) nanoscopy, 
whereby individual photon emission events are registered. As a 
molecule cannot emit more than one photon at a time, simultaneous 
arrival of multiple photons (coincidence) must mean that they 
originate from multiple fluorophores present within the same region 
(see the figure part b); thus, their number can be obtained from the 
analysis of coincidences on multiple detectors.
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imaging because they allow high recording speeds29. Fast 
local dynamics in the millisecond range can be captured 
by limiting the scan range (using a small region of inter-
est (ROI)) and adjusting the effective dwell time to the 
available signals67.

The stochastic nature of PALM, STORM and PAINT 
approaches sets a minimum time span required to 
accumu late a representative number of localization 
events. Hence, with the fluorescent dyes currently used 
in cellu lar nanoscopy, recordings with a time window of 
a few seconds may suffer from an insufficient sampling 
of the available emitters and an incomplete representa-
tion of all the molecules present. Nonetheless, under 
favourable conditions, video-rate STORM has been 
demonstrated and used to capture the motion of transfer-
rin receptors in the plasma membrane66,190. Importantly, 
a uniform single-fluorophore event detection rate in 

widefield coordinate-stochastic nanoscopy means that 
the  sampling of a structure will proceed evenly through-
out the image field. Consequently, properly resolving a 
large ROI requires as much time as recording a small 
ROI. This benefit contrasts single-point scanning meth-
ods, where the recording time scales linearly with the 
area (or volume) of the ROI. However, this relation is 
not insuper able, as STED, RESOLFT and related methods 
can be implemented in a highly parallelized manner191–196. 
Therefore, these parallelized coordinate- targeted con-
cepts may provide quick acquisition of large ROIs and 
are predicted to be the methods of choice for future live-
cell nanoscopy. Long-term live-cell imaging has already 
been reported using SIM methods, which also inherently 
detect in the widefield mode (in parallel) with relatively 
low light doses applied to samples, albeit not at the 
 resolution attainable by nanoscopy38,197,198.

Figure 7 | Super-resolution microscopy in vivo: mouse and fruitfly nanoscopy. a | Stimulated emission depletion 
(STED) nanoscopy of a mouse with enhanced yellow fluorescent protein-labelled neurons. Shown are dendritic and axonal 
details in the molecular layer of the somatosensory cortex of a living, anesthetized mouse. Optical access to the brain 
cortex was enabled by a cover glass-sealed cranial window. Top panel: image of a neuron. Bottom panel: STED time-lapse 
recording of spine morphology dynamics. Scale bars: 1 μm. b | Reversible saturable/switchable optical linear fluorescence 
transitions (RESOLFT) imaging of the microtubule cytoskeleton of intact, living Drosophila melanogaster larvae. A second 
instar larva ubiquitously expressing a fusion protein composed of the reversibly switchable fluorescent protein (RSFP) 
rsEGFP2 fused to α-tubulin was placed under a coverslip and imaged through the intact cuticle. Left: confocal overview. 
Middle and right: magnifications of the area indicated by the corresponding square. Shown are comparisons of confocal 
and RESOLFT recordings (separated by a dashed line), exemplifying the difference in resolution. Scale bars: 10 μm, 
1 μm and 500 nm (from left to right). Part a is adapted from REF. 206. Reprinted with permission from AAAS. Part b is 
adapted with permission from REF. 207, CC-BY 3.0.
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Phototoxicity is dependent not only on the light dose, 
intensity and wavelength but also on the specific fluoro-
phore being used, its immediate environment and the 
cell type under investigation. There is a general consen-
sus that longer wavelengths and lower light intensities 
are desirable to reduce unwanted phototoxic effects199. 
The various nanoscopy concepts impose different 
requirements on the light intensities needed to break 
the diffraction barrier. STED methods entail relatively 
high intensities at the maxima of the switching light 
(~1–200 MW cm–2), depending on the desired resolu-
tion, albeit only in a single point of the sample at a time. 
In RESOLFT beam-scanning nanoscopy using reversibly 
switchable fluorescent proteins, the light intensities used 
(~1–100 kW cm–2) are several orders of magnitude lower 
and thereby comparable to those typically used in live-
cell confocal fluorescence microscopy199. Coordinate-
stochastic approaches use intensities comparable to 
those of the coordinate-targeted class (~1–10 kW cm–2 
in most experiments). Within the stochastic concepts, 
light energy is typically deposited continuously to the 
entire imaged region rather than to a single spot that 
is swiftly scanned across the specimen. Therefore, the 
total light dose impinging on the cell is lower by 3–4 
orders of magnitude in beam-scanning RESOLFT nano-
scopy compared with stochastic single-molecule-based 
approaches. Still, even these relatively low light doses 
might be too high for prolonged live-cell nanoscopy, 
and hence, extended live-cell imaging may ultimately 
require radically new concepts to overcome the problem 
of photo toxicity. Potential new approaches on the fluoro-
phore side include dyes and fluorescent proteins that 
absorb and emit in the infrared range (longer wavelength 
and lower energy) and/or that are switchable with much 
lower light intensities. On the instrumentation side, new 
scanning concepts such as MINFIELD28 will allow the 
acquisition of more frames before bleaching, opening 
new possibilities to address the issue of  phototoxicity 
while maximizing the information gain.

In thicker tissue slices and to an even greater extent 
in intact organisms, optical readout is complicated by 
enhanced light absorption and scattering as well as 
sample-induced optical aberrations with increasing 
depth of imaging. Strategies from adaptive optics have 
been explored to alleviate the latter problem for both 
STED200,201 and coordinate- stochastic nanoscopy202, 

although this methodology is still a frontier. In practical 
terms, careful refractive index matching to the sample is 
an important first step to reduce aberrations in vivo203. 
The growing number of live-cell studies on single cells 
using various nanoscopy technologies clearly shows that 
nanoscopy is indeed a powerful and urgently needed 
tool92,160,163,190,204. However, the number of nanoscopy 
studies focusing on living tissues and intact organ-
isms is still limited to a few proof-of-concept investi-
gations, all of which have used coordinate-targeted 
schemes114,116,118,205. Two examples of nanoscopy in whole 
animals (mice and fruitfly larvae)206,207 are presented 
in FIG. 7.

Outlook
We are at a point where an increasing number of plat-
forms for nanoscopy has become accessible to research-
ers around the world. The capabilities of any nanoscopy 
method can hardly be captured by a single figure of 
merit because the rationale of each concept, such as that 
of STED, STORM or MINFLUX, is much more general 
than any specific implementation currently available. 
For example, applying STED with only moderate inten-
sity can readily provide confocal-type recording with 
extended SIM-like resolution.

Despite the common underlying principles among 
these methods, the differences in their image gener-
ation processes require attention to different challenges. 
In STED and RESOLFT imaging, adaptation of pixel 
dwell times and choices in scanning affect the image 
brightness and contrast. PALM/STORM, PAINT and 
MINFLUX all require computational image reconstruc-
tion. In these methods, aspects such as pixel or voxel 
binning or the subsets of fluorophore localizations that 
are included, discarded or combined in postprocessing 
all affect the image reconstruction outcome.

Carefully applied, however, the promise of fluores-
cence nanoscopy is immense. Exciting opportunities 
exist for combining nanoscopy with other imaging 
modalities, especially electron microscopy. The number 
of studies in which nanoscopy has been used to obtain 
new information, either by revealing new details or prov-
iding entirely unexpected insights, has overtaken the 
number of proof-of-principle publications. Nanoscopy, 
providing a highly resolved view of the cell, prompts new 
ideas that will help break new ground in cell biology.

Reversibly switchable 
fluorescent proteins
(RSFPs). Fluorescent proteins 
that can be reversibly switched 
by light irradiation between 
long-lived non-fluorescent ‘off’ 
and fluorescent ‘on’ states. 
RSFPs can be efficiently 
transferred between the two 
states at even a low light dose. 
Because the established state 
difference remains in place for 
milliseconds to hours, in 
RSFP-based reversible 
saturable/switchable optical 
linear (fluorescence) transitions 
nanoscopy, much lower light 
intensities are needed to break 
the diffraction barrier than in 
stimulated emission depletion 
nanoscopy.

Adaptive optics
Optical strategies to 
compensate for the effects of 
aberration and ensure more 
optimal focusing by 
deliberately modifying the 
phase across the light 
wavefront, often in response to 
a measurement to characterize 
the presence of aberrations, 
which is used as feedback.

Refractive index
A dimensionless number 
expressing the factor by which 
light is slowed down when 
travelling through a material 
compared with in vacuum. 
The refractive index of the 
immersion medium of an 
objective lens co-determines 
its numerical aperture.
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