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Abstract

For decades, biologists have relied on software to visualize and interpret imag-

ing data. As techniques for acquiring images increase in complexity, resulting

in larger multidimensional datasets, imaging software must adapt. ImageJ is

an open-source image analysis software platform that has aided researchers

with a variety of image analysis applications, driven mainly by engaged and

collaborative user and developer communities. The close collaboration

between programmers and users has resulted in adaptations to accommodate

new challenges in image analysis that address the needs of ImageJ's diverse

user base. ImageJ consists of many components, some relevant primarily for

developers and a vast collection of user-centric plugins. It is available in many

forms, including the widely used Fiji distribution. We refer to this entire

ImageJ codebase and community as the ImageJ ecosystem. Here we review the

core features of this ecosystem and highlight how ImageJ has responded to

imaging technology advancements with new plugins and tools in recent years.

These plugins and tools have been developed to address user needs in several

areas such as visualization, segmentation, and tracking of biological entities in

large, complex datasets. Moreover, new capabilities for deep learning are being

added to ImageJ, reflecting a shift in the bioimage analysis community towards

exploiting artificial intelligence. These new tools have been facilitated by pro-

found architectural changes to the ImageJ core brought about by the ImageJ2

project. Therefore, we also discuss the contributions of ImageJ2 to enhancing

multidimensional image processing and interoperability in the ImageJ

ecosystem.
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1 | INTRODUCTION

ImageJ is a widely-used open-source software that allows
users to visualize, inspect, quantify, and validate scien-
tific image data.1 Imaging-based methods serve a crucial
role in the life sciences and have undergone tremendous
growth in the past decades.2 As novel imaging modalities
emerge and datasets become more complex, having
reproducible and reliable methods to interpret biological
images is the core of image analysis, where “seeing is a
matter of learning”.2 Image analysis allows users to
extract information from images in a reproducible man-
ner. For this to occur, the algorithms and parameters
used must remain open and consistent. If any component
of the algorithm is proprietary, researchers may be
unable to reproduce their work or track changes with full
transparency, which is imperative to the scientific pro-
cess.2 To address this need, open source software is
advantageous, and this is one of the main reasons for
ImageJ's widespread use.

Novel imaging modalities offer enhanced resolution,
specificity, and coverage and have contributed to many of
the tremendous biological advancements over the past
several decades.3–7 Modern research therefore requires
methods for the efficient and robust manipulation, inter-
pretation, and visualization of such advanced, multi-
dimensional imaging data.8 This is important for a wide
array of biological studies that include quantifying the
proximity of fluorescent-labeled proteins,9 tracking cell
fates over time,10 automating cell counting,11 tracking
invading cancer cells,12 collecting whole-slide
information,13 quantifying and characterizing cells, such
as microglia, within the brain,14 or registering multiview
light sheet fluorescence microscopy datasets to study
development.15,16 Image analysis also serves a crucial bio-
medical role for diagnostic interpretation.17–20 As the
prevalence of large multidimensional datasets continues
to grow, the ability to manually take measurements not
only becomes impractically time-consuming, but the sen-
sitivity, accuracy, objectivity, and reproducibility of doing
so can become greatly inhibited.21,22 Because of these
challenges, we will highlight in this review current devel-
opments within the ImageJ ecosystem that address the
handling of large, multidimensional datasets, including
annotating and performing advanced image analysis
techniques.

Historically, the predecessor to ImageJ, NIH Image,
was developed by Wayne Rasband in 1987 at the National

Institutes of Health. Rasband was enthusiastic about the
concept of open code sharing on the electronic bulletin
boards of the time and the possibilities offered by the
release of the Apple Macintosh II with advanced graphics
and support for the Pascal programming language. His
goal was to allow third party developers to customize and
create their own domain-specific analysis routines23 and
let users drive the applications of NIH Image. In 1995,
when Sun Microsystems released the Java programming
language that could run on any operating system, the
transition of NIH Image to Java was initiated, and the
first release of the succeeding platform, known as
ImageJ, occurred.23

Figure 1 shows the evolution of the ImageJ ecosys-
tem. ImageJ has a simple and single toolbar that opens
when the program is running, and this toolbar has
remained much the same since its early years. Next to
this remarkable stability, ImageJ is also uniquely flexible.
Its core feature from the very beginning has been, and
still is, that it can be extended by users to fulfill the spe-
cific needs of their analyses. Thus, ImageJ—as designed
in its first incarnation as NIH Image, as well as the first
generation of the cross-platform ImageJ,23 henceforth
referred to as ImageJ1 to disambiguate it from ImageJ2—
can adapt to changing times and technologies, and it con-
tinues to do so to this day.

Fiji (Fiji is Just ImageJ), a “batteries-included” distri-
bution of ImageJ (https://imagej.net/Welcome) bundling
many plugins which facilitate scientific image analysis,
was introduced in 2007 to ease installation and develop-
ment of more complex plugins but also to be ready-to-use
as-is by biologists.24 Fiji developers introduced several
key components such as an automatic update mecha-
nism24 (https://imagej.net/Updater), a script editor
(https://imagej.net/Script_Editor), and a more powerful
image data model26 (https://imagej.net/ImgLib2). Con-
currently, the ImageJ2 project sought to improve
ImageJ's core architecture, introducing an improved plu-
gin mechanism (https://imagej.net/SciJava_Common)
enabling greater extensibility.27 The two projects joined
forces, and now Fiji builds upon the ImageJ2 framework
to which it contributed several important libraries. The
marriage of Fiji and ImageJ2 did not mean divorce from
ImageJ1; on the contrary, ImageJ2 provides backwards
compatibility with ImageJ1 via the ImageJ Legacy bridge
(https://imagej.net/ImageJ_Legacy), allowing existing
ImageJ1 plugins to continue working as-is in the new sys-
tem. ImageJ is compatible with macOS, Linux, and
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Windows and comes in several “flavors”—or packages.
The current ImageJ ecosystem includes the original
ImageJ1, the updated ImageJ2, the Fiji distribution of
ImageJ, and community plugins, shipped individually via
Update Sites,28 which extend the functionality of ImageJ.
More than 200 listed Update Sites (https://imagej.net/
Update_Sites) in ImageJ's central registry provide a con-
venient vehicle for users to obtain the latest releases of
novel ImageJ tools and specialized plugins. The Fiji dis-
tribution includes a broad collection of preloaded plugins
available for scientific image analysis and is rec-
ommended for new users.29 Many advanced plugins (for
a small selection, see Table I) rely on Fiji's modern distri-
bution that includes accessible compilations, automatic
updates, and third-party libraries.

The ImageJ ecosystem lends utility to a wide range
of users with varying programming expertise: from the
bench biologist with little-to-no programming experi-
ence taking advantage of the prepackaged plugins, to
power users who customize their image analysis pipe-
lines with scripts that automate entire workflows within
ImageJ. One of the most unique and attractive elements
of ImageJ is how easily customizable and adaptable it is
even for novice users. Users with no formal program-
ming experience can record actions using the Macro
Recorder23 by performing them manually in ImageJ.
From there, with the Script Editor, users can expand
their code snippets into scripts that can be easily shared
with others. On the software engineering side, the mod-
ular structure of ImageJ2 enables programmers to
extend ImageJ in a wide variety of ways, including the
ability to use components of ImageJ as building blocks
for their own software tools and to build bridges with
other platforms.23,24

While ImageJ has been utilized predominantly by
biologists working in a research setting,47–51 it has also
served users from diverse nonbiological research fields,
including geologists52 and astronomers.53 As of July 2020,
a simple PubMed search of the term “ImageJ” yields
2,626 results that represent publications within biology,11

but also art,54,55 dentistry,20,56 medicine,18,21 and geol-
ogy.52 Even historians have used ImageJ, for example, to
reconstruct inner woodworm holes to study the interior
state of precious medieval sculptures.55 Thus, the ImageJ
ecosystem offers highly valuable, inclusive, and versatile
image analysis capabilities across many disciplines.

Rather than being controlled by a single group of
developers, development is community-driven; users and
developers interact to best optimize their code for a par-
ticular problem. The ImageJ wiki (https://imagej.net)
serves as the main information repository for both users
and developers. Additionally, the recently introduced Sci-
entific Community Image Forum (https://forum.image.
sc) serves as a discussion forum and a source of helpful
advice for many open-source toolkits, including ImageJ
and Fiji.57 Virtually everything in the ImageJ ecosystem
can be found in freely-accessible GitHub repositories,
facilitating contributions and collaborative development.
Individuals may modify any particular component of
the ImageJ ecosystem, be it core library or particular plu-
gin, and publish these changes to GitHub where other
users and developers review the new code, provide feed-
back, and incorporate useful additions into the ecosys-
tem.58 The ImageJ wiki, the forum, and GitHub (https://
github.com/imagej and https://github.com/fiji) are the
three pillars on which the ImageJ ecosystem and its
diverse, vibrant user and developer community rests.
Together they allow for maintenance, growth, and

FIGURE 1 A diagram of the

evolution of NIH Image to the

current ImageJ ecosystem including

release dates from 1987 until

present. Fiji24 leverages the updated

ImageJ2 framework, which contains

elements from ImageJ1 via the

optional ImageJ Legacy bridge that

facilitates full backwards

compatibility. Fiji comes

prepackaged with many plugins and

tools including (a,c) registration,

(b) segmentation, and

(d) measurement tools. Thumbnail

images are courtesy of the Fiji

community24,25
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TABLE I Representative specialized plugins and libraries in ImageJ ecosystem

Plugin or library Description
Representative contributors
(limited to three)

BigDataViewer30

(https://imagej.net/BigDataViewer)
Inspects large image files from local and
remote data sources while
maintaining the image metadata

Tobias Pietzsch

BigStitcher31

(https://imagej.net/BigStitcher)
Software package that allows simple
and efficient alignment of multitile
and multiangle image datasets, for
example acquired by light sheet,
widefield or confocal microscopes

Stephan Preibisch,
David Hörl

BigWarp32

(https://imagej.net/BigWarp)
Tool for manual, interactive, landmark-
based deformable image alignment,
using Java implemented thin plate
splines to build a dense deformation
model

John Bogovic,
Stephan Saalfeld, Tobias Pietzsch

Bio-Formats33

(https://imagej.net/Bio-Formats)
Standalone Java library for reading and
writing life sciences image file
formats capable of parsing both pixels
and metadata for a large number of
formats

Melissa Linkert,
Curtis Rueden,
Sébastien Besson

ClearVolume34

(https://imagej.net/ClearVolume)
Real-time, accelerated 3D-volume
rendering for multichannel image
processing, inspection during
acquisition

Florian Jug,
Loic Royer,
Martin Weigert,

CSBDeep35

(https://imagej.net/CSBDeep)
Open-source machine learning plugin
compatible with Fiji, python, KNIME
that can restore and segment
fluorescence images

Uwe Schmidt,
Deborah Schmidt,
Martin Weigert

DeepImageJ36

(https://deepimagej.github.io/
deepimagej/)

User-friendly plugin that enables the
use of a variety of pretrained deep
learning models in ImageJ and Fiji

Carlos García-López-de-Haro,
Estibaliz Gómez-de-Mariscal,
Daniel Sage

Fijiyama37

(https://imagej.net/Fijiyama)
3D registration tool for multimodal
time-lapse imaging

Romain Fernandez,Cédric Moisy

FLIMJ38,39

(https://imagej.net/FLIMJ)
Fluorescence lifetime imaging
microscopy analysis and image
processing

Dasong Gao,
Paul Barber,
Curtis Rueden

ImageJ Ops17

(https://imagej.net/Ops)
Framework for reusable image
processing operations, ops extends
Java's mantra of “write once, run
anywhere” to image processing
algorithms

Curtis Rueden,
Christian Dietz,
Alison Walter

ImageJ-OpenCV
(https://github.com/imagej/imagej-
opencv)

Library that enables OpenCV to be used
from ImageJ commands and scripts
and provides converters between
ImgLib2 and OpenCV data structures

Gabriella Turek,
Curtis Rueden

ImageJ-TensorFlow
(https://github.com/imagej/imagej-
tensorflow)

This project enables TensorFlow to be
used from ImageJ commands and
scripts

Curtis Rueden,
Deborah Schmidt,
Benjamin Wilhelm

ImageJ updater
(https://imagej.net/Updater)

Keeps users up-to-date with all
components of ImageJ, including
both plugins and the core
components (libraries) needed by
those plugins

Johannes Schindelin,
Curtis Rueden, Deborah Schmidt

(Continues)

SCHROEDER ET AL. 237

https://imagej.net/BigDataViewer
https://imagej.net/BigStitcher
https://imagej.net/BigWarp
https://imagej.net/Bio-Formats
https://imagej.net/ClearVolume
https://imagej.net/CSBDeep
https://deepimagej.github.io/deepimagej/
https://deepimagej.github.io/deepimagej/
https://imagej.net/Fijiyama
https://imagej.net/FLIMJ
https://imagej.net/Ops
https://github.com/imagej/imagej-opencv
https://github.com/imagej/imagej-opencv
https://github.com/imagej/imagej-tensorflow
https://github.com/imagej/imagej-tensorflow
https://imagej.net/Updater


adaptation of the ImageJ ecosystem to the changing
image analysis needs of the scientific community.

This review emphasizes new and ongoing develop-
ments within the ImageJ ecosystem, and particularly
within Fiji, that are useful for biologists working with
advanced imaging techniques; they include machine
learning with TensorFlow,59 the hosting of deep learning
models with DeepImageJ,36 and even the training of

TensorFlow-based artificial neural networks from within
Fiji with CSBDeep.60,61 We will also cover tasks such as
tracking millions of cells in light sheet microscopy
recordings of animal development with Mastodon41 and
MaMuT,40 and 3-dimensional (3D) image data visualiza-
tion with ClearVolume34 and SciView.42,43 These plugins
were selected to highlight the diversity of the ImageJ eco-
system. In this review, we also aim to explain some of the

TABLE I (Continued)

Plugin or library Description
Representative contributors
(limited to three)

ImgLib226

(https://imagej.net/ImgLib2)
General-purpose, multidimensional
image processing library and core to
ImageJ2 and Fiji

Tobias Pietzsch,
Curtis Rueden,
Stephan Saalfeld,

Labkit
(https://imagej.net/Labkit)

Advanced ImageJ2 plugin for image
labeling and segmentation, featuring
a user-friendly interface to work on
large datasets

Matthias Arzt

MaMuT40

(https://imagej.net/MaMuT)
Annotation and multiviewing of big
data, combining the power of
BigDataViewer and TrackMate;
requires manual or semi-automated
annotation

Jean-Yves Tinevez,
Tobias Pietzsch

Mastodon41

(https://github.com/mastodon-sc/
mastodon)

Facilitates computational analysis
within cellular, developmental, or
stem cell biology to provide
interactive inspection that is fast and
responsive; semi-automatic and fully
automatic tracking data; extract
numerical features to gather statistics

Tobias Pietzsch,
Jean-Yves Tinevez

SCIFIO42

(https://imagej.net/SCIFIO)
Flexible framework for SCientific image
format input and output, that is, a
library for reading and writing
N-dimensional image data

Curtis Rueden,
Mark Hiner,

SciJava
(https://imagej.net/SciJava)

Collaboration of projects providing
software for scientific computing—
An effort to cooperate and reuse code
when feasible; includes ImgLib2,
SCIFIO, bio-formats, ImageJ2, or Fiji

Curtis Rueden,
Johannes Schindelin,
Mark Hiner

SciView43,44

(https://imagej.net/SciView)
Visualize large 3D datasets, integrates
ImageJ ops and ImageJ mesh to mesh
data

Kyle Harrington,
Ulrik Günther,
Tobias Pietzsch

Script editor
(https://imagej.net/Script_Editor)

Script editor and interpreter for SciJava
scripting languages within ImageJ
and Fiji

Johannes Schindelin,
Curtis Rueden,
Albert Cardona

Trainable Weka Segmentation45,46

(https://imagej.net/Trainable_Weka_
Segmentation)

Plugin that combines a collection of
machine learning algorithms with a
set of selected image features to
produce pixel-classifications

Ignacio Arganda-Carreras,
Johannes Schindelin,
Matthias Arzt

TrakEM247

(https://imagej.net/TrakEM2)
Plugin for morphological data mining,
three-dimensional modeling and
image stitching, registration, editing,
and annotation

Albert Cardona,
Stephan Saalfeld
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latest advancements in the ImageJ ecosystem, revealing
how this set of open source tools is adapting to the ever-
changing requirements in the fast-paced field of bioimage
analysis.

2 | DISCUSSION

ImageJ's capabilities range from common tasks such as
opening images of various formats, annotating and
processing images, and executing simple workflows on
images, to advanced projects involving visualizing and
analyzing large image data and implementing machine
learning algorithms. The following sections address com-
mon tools used in ImageJ and review frequently-used
image analysis techniques, as well as ways in which users
can extend ImageJ and customize it through macros and
scripting. We then highlight some of the current efforts
in Fiji to handle large and complex datasets and the
ongoing efforts to implement machine and deep learning
approaches. Finally, we introduce the newer, more
advanced features of ImageJ2, including the ImageJ Ops
algorithm framework.

2.1 | Opening and annotating images

While ImageJ is a useful image analysis tool for research
in the life sciences, it also serves a broader audience as a
basic image viewer and annotation tool. Bio-Formats,
included with the Fiji distribution of ImageJ, allows users
to open images saved in a broad variety of file formats.33

This ability to open almost any image generated by a
microscope often makes ImageJ the tool of choice for the
“first-look” at acquired image data. Brightness and con-
trast adjustment, image resizing, and application of
lookup tables (LUTs) are common tasks that users fre-
quently apply to freshly opened images. Next, the users
may want to apply simple transformations, such as rotat-
ing the images or cropping, as well as adding various
annotations to highlight a specific region of interest
(ROI) or structures present in the images. Users may
directly inspect pixel intensities, as well as the signal
intensity within ROIs, by generating histograms. Most
bioimage analysis tools offer a similar basic functionality,
yet users often turn to ImageJ as it can open a particular
format or because they are familiar with ImageJ's graphi-
cal user interface.

The ability to work with image stacks is one of the
core ImageJ functionalities, deeply ingrained into the
architecture of ImageJ1 and one of the factors in its long-
time use. Stacks of images obtained at various depths for
a specific field-of-view can be collapsed into a single

image by a variety of approaches, most commonly by
selecting the highest pixel value along the z direction of
the stack, the so-called Maximum Intensity Projection.
This is just one example of the functionality of ImageJ in
manipulating image stacks. It is particularly useful for
fluorescence imaging of 3-dimensional (3D) specimens to
capture the fluorescence signal at various depths and
focal planes.

For scientific publication and presentations, it is
imperative to include information about the real size of
the structures that are being displayed. The users of
ImageJ can either import the size of pixels in microns
from the image metadata or set the scale manually if this
information is not available. This facilitates direct mea-
surement of the size of structures present in the image.
Additionally, users can use the pixel size data to place
scale bars in the images for presentations or publications.

2.2 | Common image analysis
techniques: Segmentation, tracking, and
registration

ImageJ provides users the ability to segment,62 track
particles,63 and register64 their datasets. Segmentation,
that is, object detection/delineation, allows biologists to
computationally separate certain regions in their
images, such as the total area occupied by cells in
brightfield microscopy images.62 Particle tracking algo-
rithms, that is, identifying and linking objects across
multiple images over time, can, for example, assess
mitochondrial transport movements in cortical and hip-
pocampal neurons.63 Image registration, that is, trans-
forming different sets of image data into one coordinate
system, is crucial for generating high-resolution stacks
of thick 3D fluorescence microscopy data where the
sample may be moved during acquisition to accommo-
date sectioning; one such example is serial imaging of
the Drosophila brain where accurate stitching and regis-
tration is needed.15,64,65

More advanced techniques and tools are available for
segmentation, including Trainable WEKA Segmentation
(https://imagej.net/Trainable_Weka_Segmentation),
which is an ImageJ plugin that leverages machine learn-
ing provided by the open WEKA library to segment previ-
ously unseen image data.44 The Trainable WEKA
Segmentation plugin allows users to train classifiers sim-
ply by “tracing” labels on selected pixels in the training
images.46 The Fiji plugin Labkit (https://imagej.net/
Labkit), also implementing pixel classification functional-
ity via the WEKA library, additionally offers a user-
friendly and efficient way to label large 2D and 3D image
datasets thanks to improvements in architecture and
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scalability in the BigDataViewer30 and the SciJava66 com-
ponent collection.

Segmenting objects is the first step in tracking analy-
sis, which allows researchers to follow the segmented
objects' movements over time.29,67,68 Objects or structures
of interest are separated from the background signal and
then can be tracked frame-to-frame. Researchers are typi-
cally interested in tracking particular labelled biological
entities, such as cells or sub-cellular structures.
TrackMate (https://imagej.net/TrackMate) is a Fiji plugin
that facilitates manual, semi-automated, or fully-
automated single particle tracking.69 This plugin can be
utilized to track particles in 2D and 3D datasets and
accommodates multichannel images. The user interface
allows for separate execution of the image segmentation
and particle-linking steps.29,70 Users are provided with
algorithmic results for tracking, as well as quantitative
results and plots.29,70 TrackMate includes several tracking
algorithms, such as LAP tracking,69 and experienced
users can implement their own custom algorithms. The
tracking data can be exported and analyzed in third party
packages outside of ImageJ. The development of the Mas-
todon and MaMuT plugins, which allow for cell tracking
and segmentation within large datasets, will be
highlighted later in Section 2.4.

There are many advanced tools available in ImageJ
for registration. TrakEM2 (https://imagej.net/TrakEM2)
allows users to data mine their images based on morpho-
logical features and perform 3D modeling, stitching, reg-
istration, and annotation.71 TrakEM2 was developed to
segment neurons and reconstruct neuronal circuits by
skeletonizing neuronal arbors based on nodes and direc-
tional edges that incorporate the degree of certainty in
the continuity of edges.71 Fijiyama (https://imagej.net/
Fijiyama) is a 3D registration tool useful for multimodal
time-lapse imaging.37,72 When monitoring data changes
over time, particularly if acquired on two different imag-
ing systems, changes in position and orientation and reg-
istering different highlighted views of structures can be
challenging if not impossible, yielding a compromised
result. Fijiyama combines image stacks in a coherent
manner that allows the user to explore their data using
the ImageJ 3D Viewer.37,73 Recent updates include sup-
port for registering 4D or 5D multichannel or multitime
images, and future efforts will include new transforma-
tion models, as well as extended support for images
where intensity may be modulated upon adjusting size.72

The BigWarp tool (https://imagej.net/BigWarp) allows
for interactive, manual landmark-based image align-
ment.32 The BigDataViewer30 (https://imagej.net/
BigDataViewer) allows users to visualize and navigate
their datasets, using landmark pair placement to display
the effects of the warp.32

2.3 | Scripting and plugins

Scripts allow users, even those with only basic program-
ming knowledge, to automate repetitive image analysis
tasks and package simple solutions into short, named
programs that can be linked as shortcuts to the ImageJ
toolbar or menu for quick and uncomplicated access.74

The most frequently used types of scripts in ImageJ are
“macros”, a specific type of a script written in the
ImageJ1 macro language. The ImageJ1 macro language
was designed to be easy for new programmers to learn
and debug,75,76 but even users with no programming
experience can use the Macro Recorder, which allows
users to record a series of manually executed ImageJ
commands directly into code76 (Figure 2). Such recorded
sequences of events executed using the ImageJ GUI can
then be adapted in the Script Editor into fully functional
scripts75,77 that can be saved and added to the ImageJ
menu if desired. Detailed tutorials on how to record,
implement, and publish ImageJ macros (https://imagej.
net/Tutorials) are freely available on the ImageJ wiki. A
testament to the popularity of this approach amongst
ImageJ users are the thousands of available scripts listed
on ImageJ1 website.76

In addition to the ImageJ1 macro language, Fiji intro-
duced facilities to write scripts in the Script Editor in sev-
eral popular scripting languages, including JavaScript,
Clojure, BeanShell, Groovy, Python/Jython, Ruby/
JRuby, R, and Scala.77 Not all available languages can be
directly recorded via the Macro Recorder and therefore
require intermediate programming skills. However, the
programming capabilities in these established scripting
languages are vastly more advanced compared to the
ImageJ1 macro language. Since there are excellent online
tutorials and templates (small script examples including
all the syntactic requirements to start writing a specific
solution) and many biologists have significant experience
with scripting languages, this mechanism of generating
workflows in the ImageJ ecosystem is increasingly
prevalent.

2.4 | Current efforts within ImageJ:
Handling big data and specialized plugins
for analysis

Challenges arise when opening large, multidimensional
datasets using ImageJ1 (e.g., whole-slide digital pathology
images or stitched mosaics). Image datasets have gotten
larger and larger, usually being multiple gigabytes, often
reaching terabytes. Such data is difficult to open, cumber-
some to view, annotate, or quantify using ImageJ's stan-
dard image window. Fiji's BigDataViewer (BDV) plugin

240 SCHROEDER ET AL.

https://imagej.net/TrackMate
https://imagej.net/TrakEM2
https://imagej.net/Fijiyama
https://imagej.net/Fijiyama
https://imagej.net/BigWarp
https://imagej.net/BigDataViewer
https://imagej.net/BigDataViewer
https://imagej.net/Tutorials
https://imagej.net/Tutorials


has solved these problems for the ImageJ ecosystem by
allowing users to navigate arbitrarily large image files
from local and remote data sources.30 The key to BDV's
performance on big image data is the use of hierarchical
data structures (accompanied by suitable data formats
such as HDF5 or N5) that store image data as non-
overlapping chunks (referred to as “blocks”) in a multi-
resolution pyramid. BDV requests and loads only the
blocks that the user is currently interacting with and only
at the appropriate resolution. Additionally, using
ImgLib2's sophisticated caching infrastructure, BDV
keeps track of recently used blocks to avoid loading the
same data over and over again. BigDataViewer considers
each imaging channel or acquisition angle from a multi-
parametric image as a separate source that users can
manipulate independently. All this functionality relies on
the powerful ImgLib2 library.26 After the original work
on BDV, many additional functions have been added,
with some still targeting visualization of large data and
others concerning large data handling. Today, many

research software developers in the ImageJ ecosystem
use these functions, which were ultimately incorporated
as core ImageJ components. The BigStitcher (https://
imagej.net/BigStitcher) software package facilitates effi-
cient alignment for multitile and multiangle imaging
datasets acquired on light sheet, widefield, or confocal
microscopes.31 BigStitcher supports file sizes that can be
as large as many terabytes of data, such as those often
produced during light sheet microscopy acquisition.
BigStitcher is integrated within BDV, and users can inter-
actively display and process input images regardless of
file size.31,78

The power of BDV is best demonstrated via tools such
as Mastodon41 and MaMuT40 that offer interactive seg-
mentation and tracking of cells within large developmen-
tal bioimage datasets. In the context of studies of
development, researchers are often interested in follow-
ing many cells over time in 3D, quantifying their behav-
iors, and ultimately extracting developmental lineages
through the division of cells as they build a tissue or

FIGURE 2 Example of how to generate simple code in ImageJ/Fiji. After opening (a) the Macro Recorder (Plugins › Macros ›
Record…), all subsequent manual commands are saved as code, in this case, the ImageJ1 macro language. In this example, (b) the “HeLa

Cells” sample image available in Fiji was opened and channels split. Using the nuclei channel (C3), the image was filtered with a Gaussian

Blur, and a mask was generated. A scale bar (10 μm) was also added. By calling the command Analyze Particles (Analyze › Analyze
Particles…), nuclei were identified as regions of interest (ROIs) and were saved to (c) the ROI Manager and (d) a list of measurements

appeared in the Results window. Measurements can be adjusted/selected via Set Measurements (Analyze › Set Measurements…). When a

user clicks “Create” in the Macro Recorder, the generated code is added to the (e) Script Editor and, once there, can easily be edited, saved,

and reused
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entire organism over time. These tasks are often per-
formed on multiterabyte 4D image acquisitions, and the
challenges to display the data and run analysis on it in
such contexts are formidable.

MaMuT (https://imagej.net/MaMuT) is an ImageJ plu-
gin that allows efficient manual annotation of cellular lin-
eages in the context of such big image datasets.40 It
combines BDV's large data management capabilities with
TrackMate's infrastructure for managing tracking results,
described in Section 2.2. It also offers supervised semi-
automatic tracking of individual cells through the imaged
volumes. In this way, it has been used to extract a com-
plete developmental lineage of an appendage of the crusta-
cean Parhyale hawaiensis, imaged with light sheet
microscopy, answering long-standing biological questions
about appendage morphogenesis.40 In order to complete
this work, it was necessary to isolate one appendage from
the rest of the large, light sheet acquisition. MaMuT was
unable to handle the many millions of cell detections in
this complete dataset. To address such limitations, the
original MaMuT authors are currently developing Masto-
don (https://github.com/mastodon-sc/mastodon), a tool
capable of dealing with developmental lineages that con-
sist of tens of millions of cells.41 Once finished, Mastodon
will enable the analysis of automated tracking solutions
generated by arbitrary tracking algorithms on large image
data. As any such automated method will result in
extremely large lineage trees that are full of errors, biolo-
gists will also be able to use Mastodon's highly optimized,
ergonomic, and collaborative user interface to interactively
correct such imperfect solutions. Figure 3 shows a glimpse
of what Mastodon will be able to do by visualizing results
of the automated tracking of nuclei in a 3D cartographic
projection of a developing Tribolium castaneum, recorded
by multiview light sheet microscopy.

The challenging, large, and complex developmental
lineaging data highlights the need for better, more per-
formant image visualization tools in the ImageJ ecosys-
tem. To that end, several recent updates within the
ImageJ framework have been made or are currently
under development to handle different analysis aspects of
increasingly large datasets. To better visualize 3D
datasets, the SciView plugin (https://imagej.net/SciView)
is currently under development, with preview releases
available through the ImageJ Updater.42,43 The SciView
plugin integrates a combination of features from the
more recent ImageJ2 libraries, including ImageJ Ops and
ImageJ Mesh, allowing the user to interact with the
image and mesh data. Figure 4 highlights an example of
the SciView plugin for volume rendering and image
segmentation.

The ultimate frontier is to make these types of tools,
the advanced data visualization offered by SciView and

the lineage tracing of MaMuT and Mastodon, work in
real time during data acquisition. The ClearVolume plu-
gin (https://image.net/ClearVolume) offers real-time,
GPU-accelerated volume rendering for multichannel
image processing, which is particularly useful for light
sheet microscopy datasets.34 The Fiji integration of
ClearVolume enables users to conveniently and very effi-
ciently render and navigate through moderately-sized,
multichannel volumes and movies.

Once user data is compiled for visualization and navi-
gation, signal quantification and measurement tools may
be utilized for subsequent analyses, such as lifetime mea-
surements. The fluorescence lifetime of a molecule is sen-
sitive to the fluorophore's immediate environment,
including pH, oxygen concentration, and proximity to
other molecules exhibiting Förster resonance energy
transfer.79 Fluorescence lifetime imaging microscopy
(FLIM) and spectral lifetime imaging microscopy (SLIM)
are two techniques that offer the ability to assess the state
of a fluorescent molecule to gain insight into physiologi-
cal changes such as metabolism.80–82

The recently-developed FLIMJ plugin (https://imagej.
net/FLIMJ) reflects updated efforts to allow users easily

FIGURE 3 Using Mastodon to perform nuclei tracking in a

3D cartographic projection of a developing Tribolium castaneum

using an image of the blastoderm shortly after its formation (left

side: dorsal side; right side: ventral side). Each time-point includes

more than 500 tracked cells, visualized here in white fluorescence,

amounting to more than a quarter of a million detections. The

trajectory of each cell is represented by a line that fades from green

to red backwards in time. The cartographic projection does not

preserve lengths, and thus there is no uniform scale on the image.

The cells on this image have a diameter that ranges from 6 μm
(ventral) to 22 μm (dorsal). Images provided with the coordination

of Drs. Jean-Yves Tinevez (Institut Pasteur, Paris), Tobias Pietzsch

and Vladimir Ulman, and courtesy of Dr. Akanksha Jain and

Dr. Mette Handberg-Thorsager, (Tomancak lab, MPI-CBG,

Dresden)
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to analyze FLIM data (Figure 5).38 FLIMJ accommodates
single, double, or triple exponential fits with integrated
noise models; it can fit individual pixels, entire images-
per-pixel, or perform global analysis across the entire
image.38 Fit methods include Levenberg–Marquardt
Algorithm (LMA), Rapid Lifetime Determination (RLD),
Bayes and others, and statistical models including
Poisson, Gaussian, Maximum likelihood estimation
(MLE), and others. Users are also able to select the
image-spatial binning size, thresholds, and the number of
components. Batch processing can be performed to ana-
lyze datasets that include many FLIM images.38,39

FLIMJ-Ops plugs the FLIMlib library into ImageJ Ops
(which will be covered in detail below), allowing users,
via Jupyter notebooks, to invoke the Ops of FLIMJ-Ops
directly for processing.

2.5 | Machine learning in ImageJ

Machine learning applies artificial intelligence to train
computer systems to automate processes and learn from

experience to improve models without explicit program-
ming.83 Deep learning, the sub-field of machine learning
that trains artificial neural networks (ANNs) on a body of
labeled training data to solve various data analysis tasks,
is currently one of the most potent techniques in the
arena of artificial intelligence.83 Computer vision seeks to
equip computers with high-levels of understanding to
automate tasks that human vision can perform.84 These
techniques are often applied to very large, multivariable
datasets that emphasize improving predictive accuracy,
and now machine learning libraries are available in
ImageJ via new plugins and libraries such as ImageJ-
OpenCV (https://github.com/imagej/imagej-opencv) and
ImageJ-TensorFlow85 (https://github.com/imagej/imagej-
tensorflow).

2.5.1 | OpenCV

OpenCV (https://imagej.net/OpenCV) is a library com-
prised of thousands of computer vision and machine
learning algorithms.86 The OpenCV library supports
image processing, feature detection, object detection,
machine learning, and video analysis. Dominguez et al.
created a package that combines ImageJ with OpenCV to
leverage the robust computer vision algorithms of Ope-
nCV with a simple ImageJ GUI for defining regions of
interest.21 The ImageJ-OpenCV library helps to convert
between ImgLib2 and OpenCV data using the SciJava
framework.87

2.5.2 | TensorFlow and ImageJ-
TensorFlow

Deep learning is used in various ways in the ImageJ eco-
system, enabled by developments such as the open-
source ImageJ-TensorFlow library85 (https://github.com/
imagej/imagej-tensorflow). ImageJ-TensorFlow translates
between ImageJ images (backed by ImgLib2) and Ten-
sorFlow tensors,59 thereby enabling ImageJ commands
and scripts to utilize TensorFlow's data-flow model that
maps computations onto a broad scale of hardware plat-
forms. This might include inference measurements made
on all kinds of devices, including mobile devices, single
machines, or large systems with thousands of graphics
processing units (GPUs).59 A more in-depth description
of the computer workflow and models is discussed by
Abadi et al.59

TensorFlow has been used in medicine to interface
with DICOM images to classify normal versus
Parkinson's disease groups,88 to detect early and
advanced glaucoma on fundus photographs,89 and for

FIGURE 4 A SciView example visualization with synthetic

data of a 3D image containing 20 hypothetical spherical regions of

interest, representing artificial cells. The synthetic cell data is

shown as a volume rendering. Regions of interest are shown as

mesh-based geometries generated by ImageJ Ops' implementation

of the marching cubes algorithm. Color identifies nonoverlapping

cells within the represented 100 x 100 x 100 pixels bounding box.

Image courtesy of Dr. Kyle Harrington, Helmholtz Imaging

Platform, Max Delbrueck Center for Molecular Medicine in the

Helmholtz Association, Berlin, Germany and Dr. Ulrik Guenther,

Center for Advanced Systems Understanding Görlitz/Center for

Systems Biology, Dresden
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segmenting boundaries on multiphoton images of skin
cells.90 Most interestingly, the integration of TensorFlow
via ImageJ-TensorFlow not only enables the execution of
pretrained deep learning models, but it can also enable
the training of ANNs from within the ImageJ ecosystem,
for example, within CSBDeep (see below).

2.5.3 | DeepImageJ

In recent years, deep learning has proven its superiority
to other approaches in tasks such as object detection and
classification, image segmentation, face recognition, and
many more.91 Deep learning solutions in the microscopy
image domain include image restoration with Content-
Aware Image Restoration (CARE)35 (https://imagej.net/
CARE), denoising datasets with Noise2Void92 (https://
imagej.net/N2V), object and pattern recognition, and
segmentation.93

DeepImageJ (https://deepimagej.github.io/
deepimagej/) is a plugin that enables access to deep
learning models from within Fiji or ImageJ (Figure 6).36

Users need no experience with deep learning but can
simply download available deep learning models from a

central repository and embed them directly into ImageJ
or Fiji.36 The execution of the pretrained deep learning
model makes use of the Java bindings of TensorFlow.36

Since many models require certain pre- and post-
processing of the image data, DeepImageJ also hosts and
serves those in the form of ImageJ macros or scripts.
Gómez-de-Mariscal and García-López-de-Haro et al.
show several examples of data processing using
DeepImageJ, including recovering fluorescence isotropy
from cells,94 virtually staining unlabeled cells with a
hematoxylin and eosin filter with VirtualStain,95 and
segmenting HeLa cells with the U-Net feature.96

2.5.4 | CSBDeep

CSBDeep (https://imagej.net/CSBDeep and https://
csbdeep.bioimagecomputing.com/) is an open-source
library with extensive deep learning functionality in
Python and Java (Fiji). Originally developed for CARE
purposes, it is now also used in a plethora of other
research and software projects that incorporates den-
oising tools like Noise2Void,92 DenoiSeg97 (https://
imagej.net/DenoiSeg) and others.61 Initially, Weigert

FIGURE 5 An example of the FLIMJ plugin. (a) The FLIMJ-UI consists of six panels: two image panels, one fitting, one residual, one

parameter, and one export panel. The fitting panel shows one pixel's intensity decay curve (yellow bubbles) and the fit-curve (red).

Fluorescence lifetime imaging analysis is then performed to analyze the (b) autofluorescence lifetime signal from mammalian HeLa cells as

the input dataset. (c) The fitting of the same dataset can also be done from direct FLIMJ-Ops functions. A minimalistic script can run any

available fit-function of choice. Image courtesy of Dr. Jenu Chacko, Laboratory for Optical and Computational Instrumentation, Center for

Quantitative Cell Imaging, University of Wisconsin-Madison

244 SCHROEDER ET AL.

https://imagej.net/CARE
https://imagej.net/CARE
https://imagej.net/N2V
https://imagej.net/N2V
https://deepimagej.github.io/deepimagej/
https://deepimagej.github.io/deepimagej/
https://imagej.net/CSBDeep
https://csbdeep.bioimagecomputing.com/
https://csbdeep.bioimagecomputing.com/
https://imagej.net/DenoiSeg
https://imagej.net/DenoiSeg


et al. showed how fluorescence microscopy images could
be restored from images with 60 times fewer photons
acquired, showing how resolution could be enhanced
even after under-sampling the images.35 Their work also
demonstrated how to resolve granular structures smaller
than the diffraction limit at 20-times-higher frame
rates.35

Today, CSBDeep has become the basis for many other
useful applications.61,92,97,98 Additionally, the Fiji-
integrated Java parts of CSBDeep are now capable (via
the use of ImageJ-TensorFlow) to not only run saved
deep learning models, but even train such models as
Noise2Void and DenoiSeg.97 It is important to note here
that all existing code is open and fully available to others.
The intention of the developers of CSBDeep is to enable
the wider developer community to deploy their deep

learning solutions to the ImageJ ecosystem, which would
be of great utility for all users.

2.5.5 | Summary of plugin and library
contributions in ImageJ ecosystem

From navigating large datasets to handling multiview
and multidimensional imaging data to implementing
machine learning and deep learning algorithms, ImageJ
has responded to the feedback of researchers and risen to
meet their data handling needs. Table I includes some
key plugins and tools that we have highlighted in this
review. All items in the table are available in Fiji and
most are currently ImageJ-compatible or plan to be. The
following section introduces how changes to the ImageJ

FIGURE 6 An example of using DeepImageJ to segment HeLa cells in a differential interface contrast (DIC) microscopy image using a

trained U-Net. Panels (a–c) depict the ImageJ steps visualized by the user and (d–g) show the automatically executed steps defined by the

model developer and executed inside of DeepImageJ. (a) The image in this figure is a DIC microscopy image of HeLa cells (scale bar

=15 μm). (b) The DeepImageJ Run GUI allows the selection of a suitable model from the user's local machine and of any preprocessing and

postprocessing ImageJ macros given within the selected trained model (in this case, “U-Net HeLa Cell Segmentation”). DeepImageJ displays

some important information about the model's configuration such as the patch size (input size admitted by the model's architecture) and the

overlap size (size of the image borders that need to be discarded in the output image due to the size of the convolutions in the network).

(c) The final result of the segmentation using a trained U-Net is shown. (d) The DIC image intensity values were normalized (preprocessing

step). (e) A dialog box displays the time and memory information about the U-Net inference process. (f) The output of the U-Net is shown,

and (g) Watershed segmentation was used to obtain uniquely labeled cells (postprocessing). The raw DIC input image source is from the Cell

Tracking Challenge (http://celltrackingchallenge.net/2d-datasets/), captured by Dr. G. van Cappellen, Erasmus Medical Center, Rotterdam,

The Netherlands. Figure courtesy of Dr. Daniel Sage, School of Engineering (STI), Institut de Microtechnique (IMT), and Laboratoire

d'Imagerie Biomédicale (BIG), Ecole Polytechnique Fédérale de Lausanne
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software framework via ImageJ2 enhance the handling of
more complex datasets and facilitate interoperability
(Table I).

2.6 | ImageJ2 and ImageJ ops

Developments in modern microscopy and imaging are a
driving force for change to the ImageJ framework. As
multimodal and multidimensional microscopy have
evolved, so too have the needs of ImageJ users. ImageJ2
(https://imagej.net/ImageJ2) is a major effort to redesign
ImageJ's foundation to accommodate new imaging
methods, including polarized light microscopy,99 light
sheet microscopy,100 large stitched datasets, and fluores-
cence lifetime imaging microscopy.38 Because it was
designed to reflect the needs of the user community and
allow for collaborations to foster open development,
ImageJ2 improves upon ImageJ's: extensibility, that is, its
potential to be extended and enhanced with new fea-
tures; modularity, that is, the extent to which its func-
tionality is accessible as reusable building blocks rather
than only a single monolithic application; interoperabil-
ity, that is, its ability to be used in combination with
other programs and workflows; and generality and scal-
ability, that is, its capability to manage more complex
data types and larger image file sizes.23,27

ImageJ2 provides mechanisms for accessing ImageJ
functionality from other software tools, including from
Python (https://github.com/imagej/pyimagej) and
Jupyter Notebook (https://github.com/imagej/imagej-
notebook), from Node.js (https://github.com/imagej/
imagej-node), from MATLAB (https://doi.org/10.1093/
bioinformatics/btw681), from the command line (https://
imagej.net/Scripting_Headless), and via web services
(https://imagej.net/Server). Such interoperability allows
for collaboration between bioimage analysis tools to facil-
itate improved automation, where the respective
strengths of each software package may be effectively
leveraged.

ImageJ2 is more than just a desktop application; it is
a collection of reusable libraries and plugins built upon
the foundational layer of SciJava (https://imagej.net/
SciJava), an umbrella for software components which are
broader than only image processing.66 The SciJava layer
houses ImageJ's new plugin framework and application
container (https://imagej.net/SciJava_Common) as well
as the SciJava Script Editor (https://imagej.net/Script_
Editor) and script language plugins. SciJava components
also provide random-access data input/output interfaces
and plugins, expression parsing, common user interface
elements, and native library utilities, to name a few
examples.

ImageJ2 comes bundled with the ImageJ Updater to
ensure that users have seamless access to the latest
updates, as well as to new plugins when additional
Update Sites are enabled.27 ImageJ2 has extensible sup-
port for scientific image file types thanks to the SCIFIO
(Scientific Image Format Input and Output) library42 and
is able to handle N-dimensional data through the integra-
tion of the ImgLib2 multidimensional image processing
library that supports numeric and nonnumeric data
types.26 The Bio-Formats library,33 which is included
with Fiji, plugs into SCIFIO, integrating its additional file
formats more seamlessly into ImageJ.

The main library of ImageJ2 in terms of image
processing algorithms is ImageJ Ops (https://imagej.net/
Ops), which serves as an extensible framework for reus-
able operations.27 A primary goal of Ops is to make it eas-
ier and simpler for programmers to implement
algorithms, such that they can be used as is from any
SciJava-compatible software project.101 Like a function
call in most programming languages, an operation is
invoked by its name and arguments, but unlike a stan-
dard function call, Ops performs a “matching” process to
determine the best function implementation to use based
on the request. For example, for smaller kernel sizes,
naïve convolution is faster than convolving via a Fast
Fourier Transform (FFT), but FFT-based convolution is a
better choice as the kernels become larger. The Ops
framework will pick the best approach based on the argu-
ments given, in a manner enabling developers to extend
ImageJ with additional implementations handling new
cases or improving performance. For users, all routines
available in ImageJ Ops are accessible in a consistent
way from scripts, categorized by functionality into
namespaces, deterministic in behavior, that is, always
giving the same result for the same inputs, and usable
without a graphical display for example, from the com-
mand line or on nodes of a compute cluster.

3 | CONCLUSIONS

ImageJ has grown from a simple tool to analyze two
dimensional images, into a widely utilized platform for
modern biological image analysis. This growth is due to
the tireless work of the creator of ImageJ1, Wayne
Rasband, the contributions of the emergent and synergis-
tic Fiji and ImageJ2 communities, and the vast contin-
gent of users and developers adopting the ImageJ
ecosystem for their work. It was developed with the
intent to be adaptable by the users, for the users, and that
tradition of help and accessibility continues through the
ImageJ wiki, Scientific Community Image Forum, and
GitHub repositories. Open-source access to code
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repositories allows developers to adapt existing solutions
to increasingly advanced image datasets, drawing from
advances in the computer vision and machine learning
fields. Cutting edge solutions are pushed through the
ImageJ Updater to tens of thousands of users, who offer
feedback directly to the developers at scale. As new ecosys-
tems based on different programming paradigms and tech-
nologies emerge, unconstrained by decades of legacy code,
the challenge for the ImageJ ecosystem is to remain rele-
vant. This review highlights ongoing efforts within the
ImageJ ecosystem to adapt to the emergent needs and
challenges in modern biological image analysis. While the
features and adaptability of the ImageJ infrastructure and
the large numbers of users and developers invested in this
software make it a powerful tool, the way forward will
clearly be to continue building bridges to emerging plat-
forms for the benefit of the larger scientific community.
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